Curtiss-XF14C-2-front-left

Curtiss XF14C Carrier-Based Fighter

By William Pearce

On 30 June 1941, the United States Navy, in preparation for the future of aerial combat, ordered prototypes of the Grumman F6F Hellcat carrier fighter and the F7F Tigercat heavy fighter. The Hellcat was intended to replace the F4F Wildcat and counter the Japanese Mitsubishi A6M Zero. The Tigercat was intended to out-perform and out-gun all other fighters. The Hellcat and Tigercat went on to serve with distinction for many years. Also on 30 June 1941, the Navy ordered two prototypes of the Curtiss XF14C.

Curtiss-XF14C-2-front-left

The Curtiss XF14C-2 with its contra-rotating propellers and four 20 mm cannons appears as an imposing aircraft. However, its performance did not meet expectations. Note the stagger of the cannons and the glazed, rearward-sliding canopy.

Since 1939, the Navy had been supporting the development of the 2,300 hp (1,715 kW) Lycoming XH-2470 engine. The XH-2470 was a liquid-cooled, 24-cylinder engine in a vertical H configuration. The Navy’s support for the XH-2470 was unusual, as it had a long history of exclusively using air-cooled radial engines. In addition, the Navy had no applications for the engine until the XF14C was proposed as a high-performance fighter.

The Curtiss-Wright XF14C was designed at the company’s main facility in Buffalo, New York. The two XF14C-1 prototypes ordered were assigned Navy Bureau of Aeronautics numbers (BuNo) 03183 and 03184. Most sources state that the XF14C-1 was to be powered by the XH-2470-4 engine. Lycoming documents indicate that the -4 featured contra-rotating propellers. However, some sources state the XF14C-1 had a single rotation propeller that was 14 ft 2 in (4.32 m) in diameter. The XH-2470-2 used a single rotation propeller, but no sources have been found specifically stating that this was the engine for XF14C-1.

Regardless of the exact engine model and propellers, the XF14C-1 was an all-metal, low-wing aircraft with standard landing gear and a conventional layout. The gear was fully retractable, including the tail-wheel, and the main legs had a wide track. The arrestor tail hook extended from the extreme rear of the fuselage. The outer panels of the wings had around 7.5 degrees of dihedral and folded up for aircraft storage on an aircraft carrier. The fixed wing section had a flap along its trailing edge, and the folding section had a small flap on its inner trailing edge. The rest of the folding section had an aileron along its trailing edge. Just inboard of the wing-fold was the aircraft’s armament. Initially, each wing would house three .50-cal machine guns, but this was revised to two 20 mm cannons with 166 rounds per gun.

Curtiss-XF14C-2-right-side

Side profile of the XF14C-2 illustrates the large exhaust pipe from the turbosupercharger under the aircraft. The inscription under the diving figure on the cowling reads “Coral Princess.” Note the large wheel covers and the retracted tail hook.

The XF14C-1 had a 46 ft (14.02 m) wingspan, was 38 ft 4 in (11.68 m) long, and was 14 ft 6 in (4.42 m) tall. With the wings folded, the aircraft’s span was 22 ft 6 in (6.89 m). The XF14C-1 had an estimated speed of 344 mph (554 km/h) at 3,500 ft (1,067 m) and 374 mph (602 km/h) at 17,000 ft (5,182 m). Its initial rate of climb was 2,810 fpm (14.3 m/s), and it had a service ceiling of 30,500 ft (9,296 m). The aircraft had an empty weight of 9,868 lb (4,476 kg), a gross weight of 12,691 lb (5,757 kg), and a maximum weight of 13,868 lb (6,290 kg). The XF14C-1 had a range of 1,080 miles (1,738 km) at 176 mph (283 km/h) on 230 US gallons (192 Imp gal / 871 L) of internal fuel. With two 75-US gallon (62 Imp gal / 284 L) drop tanks, range increased to 1,520 miles (2,446 km) at 164 mph (264 km).

Wind tunnel tests conducted by the Navy in October 1942 indicated that the Curtiss-provided performance specifications for the XF14C-1 were optimistic, but the program moved forward. The first airframe (BuNo 03183) was mostly complete by September 1943. However, delays with the XH-2470 left the XF14C-1 without an engine. The engine delay gives some credence to a contra-rotating version of the XH-2470 being used in the XF14C-1. A single rotation XH-2470 had passed a Navy acceptance test in April 1941, and a single rotation XH-2470 that was delivered to the Army Air Force had made its first flight in the Vultee XP-54 on 15 January 1943. With the availability of the single-rotation XH-2470 for the Army Air Force, it seems that such an engine could have been supplied to Curtiss for the XF14C-1 if that is what the aircraft needed. The Navy subsequently dropped its participation in the XH-2470 engine program, and the XF14C-1 was cancelled in December 1943.

Curtiss and the Navy negotiated to proceed with the XF14C program by changing the engine to the experimental Wright XR-3350-16. The -16 was turbosupercharged and used contra-rotating propellers. Rated at 2,250 hp (1,678 kW) at 32,000 ft (9,754 m), the 18-cylinder, air-cooled, radial engine offered a higher service ceiling than the XH-2470. This interested the Navy, as they were looking toward developing a high-altitude interceptor. With the new engine, the Curtiss aircraft became the XF14C-2 and was pushed into a high-altitude fighter role. The cancellation of the XF14C-1 terminated all work on the second prototype, BuNo 03184, which was never built.

Curtiss-XF14C-2-wings-folded

The XF14C-2’s outer wing section folded up just outside of the cannons. Note the gap around the spinner for cooling the two-row, 18-cylinder R-3350 engine and that the second set of propeller blades have cuffs to aid cooling.

BuNo 03183 became the XF14C-2 and was modified to accept the new engine. A six-blade, contra-rotating Curtiss Electric propeller with a diameter of approximately 12 ft 10 in (3.91 m) was installed on the XR-3350-16 engine. The cowling incorporated an intake scoop under the engine. Oil coolers were placed in extensions of the XF14C-2 wing roots. The turbosupercharger was installed directly behind the engine in a housing that extended back from the lower cowling. A large exhaust pipe from the turbosupercharger extended below the aircraft behind the main wheels.

The Curtiss XF14C-2 had the same 46 ft (14.02 m) wingspan as the XF14C-1 but was shorter at 37 ft 9 in (37.75 m) long and 12 ft 4 in (3.76 m) tall. The aircraft had an estimated speed of 317 mph (510 km/h) at sea level and 424 mph (682 km/h) at 32,000 ft (9,754 m). The XF14C-2’s initial rate of climb was 2,700 fpm (13.7 m/s), and it had a service ceiling of 39,500 ft (12,040 m). The aircraft had an empty weight of 10,582 lb (4,800 kg), a gross weight of 13,405 lb (6,080 kg), and a maximum weight of 14,950 lb (6,781 kg). At a cruising speed of 172 mph (277 km/h), the XF14C-2 had a range of 950 miles (1,529 km) on 230 US gallons (192 Imp gal / 871 L) of internal fuel and 1,355 miles (2,181 km) with two 75-US gallon (62 Imp gal / 284 L) drop tanks.

The XF14C-2 was first flown in July 1944 and delivered to the Navy on 2 September 1944. Testing quickly revealed that the aircraft did not meet the expected performance and offered no advantage over fighters already in service. Top speeds of only 300 mph (483 km/h) at sea level and 398 mph (641 km/h) at 32,000 ft (9,754 m) were achieved. The aircraft’s engine and propeller combination also caused a bad vibration throughout the airframe. With the XF14C-2 underperforming, no urgent need for a high-altitude fighter, and all the R-3350 production dedicated for the Boeing B-29 Superfortress and Convair B-32 Dominator bombers, the Navy cancelled the XF14C-2. The airframe was eventually scrapped. The XF14C-2 was the last piston-engine fighter built by Curtiss.

Curtiss proposed the XF14C-3 to truly fulfill the role of a high-altitude fighter. It had a pressurized cockpit and could operate at 40,000 ft. Studies of the XF14C-3 were conducted at Navy expense until early 1945, but no aircraft was built.

Curtiss-XF14C-2-front-right

The XF14C-2 had oil-coolers in the wing roots. Note the dihedral angle of the outer wing sections. The engine and propeller combination caused an unacceptable level of vibration.

Sources:
Curtiss Fighter Aircraft by Francis H. Dean and Dan Hegedorn (2007)
US Experimental & Prototype Aircraft Projects: Fighters 1939-1945 by Bill Norton (2008)
American Secret Projects 1 by Tony Buttler and Alan Griffith (2015)
To Join with the Eagles by Murry Rubenstein and Richard M. Goldman (1974)
The American Fighter by Enzo Angelucci and Peter Bowers (1987)

3 thoughts on “Curtiss XF14C Carrier-Based Fighter

  1. jsm1937

    It seems that in the later years of WW2 Curtiss was entering a terminal dive, as all of its aircraft projects seem to have been rejected or delayed. The photos show a rather ungainly aircraft but extremely well made and finished, and with the later engine, Wright R-3350, the performance became reasonable. One conclusion from this excellent article is the tremendous ability and power of the wartime American aircraft industry (a mirror of the nation’s industrial might) that could turn aircraft of such high construction quality, surely better than any of USA’s allies. When this building quality was married to an intelligent aerodynamic design, as in the North American and Republic fighters, then the resulting products were outstanding, and remained standards for many years after the end of the war.
    Sergio Montes

    Reply

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.