Author Archives: William Pearce


Junkers Jumo 222 Aircraft Engine

By William Pearce

Around 1936, the RLM (Reichsluftfahrtministerium, or Germany Air Ministry) sought the design of an 1,800 hp (1,342 kW) engine for the next generation of bomber aircraft. Otto Mader, the head of the Junkers Flugzeug- und Motorenwerke AG (Junkers Aircraft and Motor Works) research institute in Dessau, considered various V and H configurations for such an engine. However, each configuration had various drawbacks. Mader discussed the engine requirements with Ferdinand Brandner and tasked him with the project. Brandner was an experienced engine and railway engineer that had recently joined Junkers.


A Junkers Jumo 222 A/B-1 engine with a short gear reduction housing. First run in 1939, the Jumo 222 represented what was believed to be the next generation of German aircraft engines. Note the coolant pump below the gear reduction housing and the fuel injection pump between the intake manifolds.

Brandner and his team set a goal of 2,000 hp (1,491 kW) and immediately began designing a completely new engine. The engine originally carried the manufacturer’s designation P2001, and Junkers submitted a proposal that outlined the 1,900 hp (1,417 kW) engine to the RLM on 4 December 1936. On 4 May 1937, the RLM placed an order for a prototype P2001 engine, which would officially become the Junkers Jumo 222 on 4 April 1938. Brandner and his team continued to work on the engine design, which was finalized on 4 June 1937. Nearly from the start, the Jumo 222 was intended to power the improved development of the Junkers Ju 88 bomber, which originally carrier the manufacturer’s designation EF 73 (Entwicklungs-Flugzeug 73, Development Aircraft 73). Later, the aircraft would become the Ju 288 bomber.

The Junkers Jumo 222 was a liquid-cooled inline radial. The engine had six cylinder banks placed radially around the crankcase at 60 degree angles, with the left and right banks horizontal. Each of the six cylinder banks had four cylinders, giving the engine a total of 24 cylinders. The outer points of the six cylinder banks formed a hexagon, making the Jumo 222 one of the rare hexagonal engines, like the Curtiss H-1640 Chieftain, the Wright H-2120, the SNCM 137, and the Dobrynin series of aircraft engines.

The two-piece aluminum crankcase was split horizontally below the left and right cylinder banks. The top four cylinder banks were on the upper crankcase half, and the bottom two cylinder banks were on the lower crankcase half. The two crankcase halves were joined by 11 studs on each side and four long studs that extended from the center main bearing. The one-piece balanced crankshaft was supported in the upper crankcase half by five plain main bearings. Each main bearing cap was secured by four vertical studs and one very long stud that passed transversely through the entire crankcase. Mounted on each of the crankshaft’s four throws was a rather typical radial-engine master rod with five articulating rods. The connecting rod was split, with three articulating rods attached to the bottom and the master rod flanked by two articulated rods on the top. The two pieces of the connecting rod were joined by four bolts. Reportedly, the master connecting rods for cylinder rows 1 and 4 (front and rear) were located in bank 5 (7 o’clock position), and cylinder rows 2 and 3 (middle two) were located in bank 6 (5 o’clock position). However, a drawing of the Jumo 222 depicts a master rod in one of the upper cylinder banks. It appears the drawing shows the configuration used in early engines, and the master rods were relocated to the lower cylinder banks in later variants. The flat-top aluminum pistons were rather short with two compression rings and two oil rings, all located above the piston pin. The engine’s compression ratio was 6.5 to 1.


Rear view of the Jumo 222 A/B-1 illustrating the supercharger and its two-sided inlet. Note how the intake manifold branches to serve two adjacent cylinder banks. The engine’s magnetos are mounted to the upper cylinder banks, and the oil pump is mounted under the supercharger.

The steel cylinder barrels were installed through the crankcase and sealed at their lower end by three rubber rings. Near the bottom of each barrel was a flange with four long studs that extended up through the cylinder head. The tightening of these studs drew the barrel up into the cylinder head and sealed it with a tapered aluminum ring to the combustion chamber. The combustion chamber was wedge-shaped with the exhaust valve on the short side. The cylinder head of each bank was a single aluminum casting secured to the crankcase by 10 studs. At the top of each cylinder were two intake valves and one sodium-cooled exhaust valve. A fuel injector was positioned between the two intake valves, and a spark plug was positioned between each of the two intake valves and the common exhaust valve. The valves for each cylinder bank were actuated via rockers by a single overhead camshaft. The rear of each camshaft was driven from the crankshaft by a series of spur gears. The camshafts turned clockwise for cylinder banks 1, 3, and 5 and counterclockwise for cylinder banks 2, 4, and 6.

Attached to the front of the crankcase was a planetary gear reduction with the propeller shaft positioned at the center of the engine. While the crankshaft turned clockwise, different gear reduction housings could be used to turn the propeller in either direction. The propeller of the Jumo 222 A, C, E and G models turned counterclockwise at .368 crankshaft speed. The counterclockwise gear reduction used a fixed planetary carrier with the propeller shaft driven from the free outer ring gear. The propeller of the Jumo 222 B, D, F and H models turned clockwise at .364 crankshaft speed. The propeller shaft of the clockwise gear reduction was driven from the free planetary carrier that rotated against the fixed outer ring gear. The clockwise gear reduction on the Jumo 222 B, D, F and H models weighed approximately 66 lb (30 kg) additional. A short gear reduction housing was available, but the extended version was most common. An inertia starter was mounted to the crankcase above the gear reduction housing, and the coolant pump was mounted below the gear reduction housing.

Attached to the rear of the crankcase was an accessory housing followed by the single-stage, two-speed supercharger. The supercharger impeller was 12.8 in (325 mm) in diameter and turned at 6.70 and 9.16 times crankshaft speed in low and high gears. It provided 8.8 lb (.61 bar) of boost for takeoff. Each of the three outlets from the supercharger fed an intake pipe that branched into two manifolds. These manifolds were positioned between the cylinder Vees at the 4, 8, and 12 o’clock positions, and each fed once cylinder bank. An eight-cylinder fuel injection pump was also positioned between the intake manifolds in each of these cylinder Vees. Individual exhaust stacks were fitted to the cylinder heads between the bank Vees at the 2, 6, and 10 o’clock positions. Engine mounting pads were located on the crankcase between the bank Vees at the 2 and 10 o’clock positions.


Sectional view of the Jumo 222 with a master connecting rod in an upper cylinder bank. This is most likely a Jumo 222 A/B-1 engine, as it appears to have an early H-beam articulated connecting rod design. Later variants had the master connecting rods in the lower banks and I-bean articulated connecting rods. Note the wedge-shaped combustion chambers.

When viewed from the rear, the cylinder banks were numbered counterclockwise starting at the right horizontal bank at the 3 o’clock position, which was bank 1. Bank 2 was at 1 o’clock, bank 3 was at 11 o’clock, and so on. The front cylinder of each bank was No 1, and the rear cylinder was No 4. Each of the upper two cylinder banks had a magneto mounted to its rear. Each magneto fired all the cylinders for three banks with no redundancy. If a magneto failed, one entire side of the engine would not fire. Cylinders in opposite banks fired simultaneously. The firing order changed during the engine’s development. The following firing order is specific to the Jumo 222 E/F but may be applicable to other engine models. The Jumo 222 E/F’s firing order was as follows: Bank 2 Cylinder 1 & Bank 5 Cylinder 2, B1C1 & B4C2, B6C4 & B3C3, B2C3 & B5C4, B1C2 & B4C1, B6C2 & B3C1, B2C4 & B5C3, B1C4 & B4C3, B6C1 & B3C2, B2C2 & B5C1, B1C3 & B4C4, and B6C3 & B3C4.

The Junkers Jumo 222 A/B-1 had a 5.31 in (135 mm) bore and stroke. The engine had a total displacement of 2,830 cu in (46.38 L). The Jumo 222 A/B-1 initially produced 2,000 hp (1,491 kW) at 3,200 rpm. At the expense of reliability, further development eventually pushed its maximum power at 3,200 rpm to 2,500 hp (1,417 kW) for takeoff and 2,200 hp (1,641 kW) at 16,404 ft (5,000 m). Climbing power at 2,900 rpm was 2,260 hp (1,685 kW) at sea level and 2,090 hp (1,559 kW) at 16,404 ft. Cruising power at 2,700 rpm was 1,900 hp (1,617 kW) at sea level and 1,700 hp (1,268 kW) at 17,060 ft (5,200 m). The engine’s fuel consumption at cruise power was .477 lb/hp/hr (290 g/kW/h) at sea level. The Jumo 222 A-1 weighed 2,690 lb (1,220 kg), and the Jumo 222 B-1 weighed 2,745 lb (1,245 kg). The engine had a diameter of 3 ft 10 in (1.16 m) and was 7 ft 5 in (2.25 m) long.

In early 1938, RLM requested that the Jumo 222’s output be increased to 2,000 hp (1,491 kW). Since the engine was designed from the start for 2,000 hp (1,491 kW), this request did not present any issues, but it foreshadowed what was to come. A single-cylinder test engine was first run in March 1938, followed by one complete row of six cylinders in June 1938. On 24 April 1939, a complete Jumo 222 A/B-1 was run for the first time and taken up to 3,000 rpm. The engine was disassembled and inspected after the test and showed no signs of wear or issues.

In May 1939, Junkers submitted to the RLM design proposals for the Jumo 222-powered EF 73 (Ju 88 development) bomber aircraft. Incidentally, EF 74 was the same basic aircraft but powered by Jumo 224 engines. Encouraged by Junkers’ proposal, the RLM issued specifications in July 1939 for a new medium bomber capable of high-speeds. Originally known as Kampfflugzeug B (Warplane B), the aircraft proposal was eventually renamed Bomber B. The Bomber B specification requested an aircraft that could carry a 2,000 kg (4,410 lb) bomb load 3,600 km (2,237 mi) and have a top speed of 600 km/h (373 mph). For alternatives to the Jumo 222, the RLM requested engine designs from BMW and Daimler-Benz. The Junkers Bomber B proposal became the Ju 288, and other entrants included the Arado E.240, Focke-Wulf Fw 191, Dornier Do 317, and later, Henschel Hs 130C. The additional engine proposals were the BMW 802 18-cylinder radial and the Daimler-Benz DB 604 X-24.


A Jumo 222 installed in the nose of a Junkers Ju 52 transport test bed. The engine was equipped with exhaust manifolds to duct the fumes away from the cockpit. Note how the Jumo 222’s engine nacelle appears no larger than those for the Ju 52’s standard 725 hp (541 kW) engines.

The Ju 288 was selected for production, although prototypes of the Fw 191, Do 317, and Hs 130C would also be built. The Ju 288 and the Fw 191 were to be powered by the Jumo 222, which was ultimately selected over the other engines. The Jumo 222 was also planned for a future development of the Do 317. When war officially broke out on 1 September 1939, the Ju 288 was perceived as an aircraft needed for a decisive victory. It and the 2,000 hp (1,491 kW) Jumo 222 A/B-1 were given a high priority. At the time, three complete Jumo 222 A/B-1 engines were running on test stands. During 1939, Junkers had formed the Otto-Mader-Werke at Dessau to focus on engine design and development. This division was run by Mader and worked on the Jumo 222 and Jumo 004 (turbojet) engines.

In March 1940, the Jumo 222 A/B-1 achieved 2,000 hp (1,491 kW) for the first time, but some difficulties were encountered at this higher output with inadequate lubrication and connecting rod issues. Modifications were made to resolve the deficiencies, and the revised engine was running in August 1940. For flight testing, the Jumo 222 was installed in the center position of a Junkers Ju 52 trimotor transport and made its first flight on 3 November 1940. However, the Jumo 222 was not ready to be installed in the Ju 288, and the aircraft made its first flight on 29 November 1940 powered by 14-cylinder BMW 801 radial engines.

In April 1941, the Jumo 222 A/B-1 completed a 100-hour type test at 2,000 hp (1,491 kW), running at 2,860 rpm. Some of the issues during the test included spark plug damage after 60 hours, a leaking injection pump controller at 75 hours, and a camshaft bearing block failure after 88 hours. When the engine was dismantled after the test, coolant and fuel leaks were discovered, but they were not considered serious. Based on the overall positive results of the 100-hour test, the RLM ordered the Jumo 222 into production on 30 April 1941. The engine would be built at the new Flugmotorenwerke Ostmark (Aircraft Engine Factory in annexed Austria) plant under construction in Wiener Neudorf, Austria, with production expected to start on 30 August 1942. A monthly output of 1,000 engines was forecasted.

Starting in mid-1940, the RLM began to alter requirements for the Ju 288. A fourth crew member, additional equipment, and airframe changes resulted in the aircraft’s weight increasing to the point that 2,000 hp (1,491 kW) was no longer sufficient for the Ju 288 to achieve its originally-specified performance. Around mid-1941, the RLM requested that the Jumo 222 produce 2,500 hp (1,864 kW) for the Ju 288. Junkers had foreseen this request and began developing the Jumo 222 A/B-2 in 1940 to reliably produce 2,500 hp (1,864 kW) and resolve issues encountered with the early engines.


A 2,000 hp (1,491 kW) Jumo 222 A/B-1 installed in a Junkers Ju 288 engine nacelle. Note the individual exhaust stacks protruding from the cowling.

The Jumo 222 A/B-2’s cylinder bore was increased .20 in (5 mm) to 5.51 in (140 mm), while its stroke remained unchanged at 5.31 in (135 mm). This change increased the Jumo 222 A/B-2’s displacement by 214 cu in (3.50 L) to 3,044 cu in (49.88 L). The H-beam articulated connecting rods of the early engines were replaced with an I-bean articulated connecting rod design. The engine’s compression ratio may have been raised to 6.735 to 1, and valve diameters may have been altered slightly. The Jumo 222 A/B-2 had a balance pipe between the intake manifolds of adjacent cylinder banks. Engine speed was limited to 2,900 rpm in an attempt to increase its reliability. The Jumo 222 A/B-2’s maximum power at 2,900 rpm was 2,500 hp (1,864 kW) for takeoff and 2,490 hp (1,857 kW) at 16,404 ft (5,000 m). Climbing power at 2,700 rpm was 2,250 hp (1,678 kW) at sea level and 2,050 hp (1,529 kW) at 16,404 ft (5,000 m). Cruising power at 2,500 rpm was 1,900 hp (1,417 kW) at sea level and 1,750 hp (1,305 kW) at 16,404 ft (5,000 m). The engine’s fuel consumption at cruise power was .449 lb/hp/hr (273 g/KW/h) at sea level.

The Jumo 222 A/B-2 was first run in mid-1941 and was taken briefly to 3,000 hp (2,237 kW) by overboosting to 11.5 psi (.79 bar) in October 1941. However, the increased bore size created a harmonic resonance within the engine. With three Ju 52s serving as Jumo 222 test beds and a number of other engines on test stands, the entire project began to encounter significant issues. Connecting rod bearings were still a problem as was corrosion of the engine’s internal components. Despite the issues, the Jumo 222A/B-1-powered Ju 288 V5 made its maiden flight on 8 October 1941. Brandner had managed to talk his way onto the aircraft for the flight, which was completed without issue. For the Ju 288, the Jumo 222 turned a four-blade Junkers VS 7 propeller that was a 13 ft 1 in (4.0 m) in diameter. An annular radiator was positioned in the cowling, and experiments were conducted on Ju 288 V5 using a ducted spinner to deliver cooling air to the radiator.

As the manufacturing plant in Austria neared completion in late October 1941, it was clear that the Jumo 222 was not going to be ready for production. A decision was made to manufacture the Daimler-Benz DB 603 at the plant with production starting in March 1942. On 24 December 1941, the RLM cancelled the Jumo 222 for the Ju 288. The decision was based on the engine’s then-current takeoff rating of only 2,000 hp (1,491 kW), its ongoing issues, and its operational readiness not being sufficient for the Ju 288’s planned production schedule. The Ju 288 would be powered by DB 610 (two coupled DB 605s) engines, and Junkers would focus on developing the Jumo 213 inverted V-12. Work on the Jumo 222 would continue, but the engine was no longer a priority. Brandner stated that, at the time, various Jumo 222 engines had completed 20 100-hour test runs, and many at Junkers felt that the engine was basically ready for production. However, further issues with the connecting rod bearings caused a developmental delay that extended from January to March 1942.

The connecting rod bearing failures took a long time to resolve with experimentation of different bearing materials and lubrication techniques. Ultimately, a new connecting rod design was employed, the antimony alloy bearing material was replaced with a tin alloy, and the synthetic engine oil used was switched to a natural oil with an increased sulfur content. Due to tin shortages, antimony had been substituted early in the engine’s development.


A Jumo 222 A/B-2 or -3 engine with an extended gear reduction housing. Note the revised intake manifolds with a balance pipe joining the two at their center. Two engine mounting pads are visible between the upper cylinder banks.

the Jumo 222 A/B-3 was developed to cure the vibration and harmonic issues of the A/B-2 and with an improved supercharger to maintain power up to 20,997 ft (6,400 m). Along with a revised gear train, the engine incorporated all other revisions to improve reliability. The Jumo 222 A/B-3’s maximum power at 3,000 rpm was 2,500 hp (1,864 kW) for takeoff and 2,410 hp (1,797 kW) at 9,186 ft (2,800 m). Climbing power at 2,700 rpm was 2,250 hp (1,678 kW) at sea level and 1,980 hp (1,476 kW) at 20,997 ft (6,400 m). Cruising power at 2,500 rpm was 1,860 hp (1,387 kW) at sea level and 1,640 hp (1,223 kW) at 20,997 ft (6,400 m). The engine’s fuel consumption at cruise power was .463 lb/hp/hr (282 g/Kw/h) at sea level.

The Jumo 222 A/B-3 was developed quickly, and was first run in late 1941. Like the Jumo 222 A/B-2, it was briefly tested to 3,000 hp (2,237 kW) by overboosting to 11.5 psi (.79 bar) on 26 May 1942. The RLM became interested in the Jumo 222 A/B-3 and ordered it into production on 5 August 1942. Production would be undertaken at a plant in Prague in German-occupied Czechoslovakia. Optimistically, the first Jumo 222 A/B-3s were expected in October 1944 with a peak production of 1,500 engines per month achieved in September 1945. Running at 2,500 hp (1,864 kW), the Jumo 222 A/B-3 completed a 50-hour test on 9 December 1942 and a 100-hour test on 11 March 1943. The engine was tested in Ju 52s and Ju 288 aircraft, but the production plans were never realized.

The Fw 191 made its first flight in early 1942 and used BMW 801s. It was not until December 1942 that the Fw 191 V6 (third aircraft built) flew with Jumo 222 engines. With engine issues and constant changes to the underperforming bomber aircraft, the Bomber B program was cancelled in June 1943. Germany was short on resources, which were better utilized in the production of fighter aircraft rather than building troubled experimental bombers with problematic engines.

The Jumo 222 C/D was conceived in 1941 to produce 2,500–3,000 hp (1,864–2,237 kW) for high-altitude operations. The Jumo 222 C/D was designed and built with its bore increased to 5.71 in (145 mm) and its stroke increased to 5.51 in (140 mm). This gave the Jumo 222 C/D a total displacement of 3,386 cu in (55.48 L). The engine produced 3,000 hp (2,237 kW) at 3,000 rpm and could maintain much of that power up to 32,808 ft (10,000 m) thanks to an improved supercharger. Some reports indicate the Jumo 222 C/D was first run in mid-1942, but it was never given priority or considered for production until 1945, when a 3,000 hp (2,237 kW) engine was desperately needed. Apparently, two Jumo 222 C/D engines were completed, but the deteriorating war conditions shifted priorities and prevented them from being tested.


The Ju 288 V5 (A-series, three-man crew) was the first of the type to fly with Jumo 222 engines. The cowling incorporated an annular radiator that was fed via a ducted spinner. Subsequent prototypes powered by Jumo 222 engines used standard spinners.

In late 1943, the Jumo 222 E/F was developed from the A/B-3 series with a 5.51 in (140 mm) bore, 5.31 in (135 mm) stroke, and 3,044 cu in (49.88 L) displacement. The engine was equipped with a two-stage, two-speed supercharger. While the primary stage of the supercharger was mechanically driven, the auxiliary stage used an infinitely variable fluid coupling. An air-to-water aftercooler was incorporated on each of the three intake pipes between the supercharger and where the pipe branched into the two intake manifolds. Coolant for the aftercooler system was circulated by a separate pump. Reports indicate that the Jumo 222 E/F had sodium-cooled intake valves and a 6.75 to 1 compression ratio.

The Jumo 222 E/F’s maximum power at 3,000 rpm was 2,500 hp (1,864 kW) for takeoff and 1,930 hp (1,439 kW) at 29,528 ft (9,000 m). Climbing power at 2,700 rpm was 2,220 hp (1,655 kW) at sea level and 1,680 hp (1,253 kW) at 36,000 ft. Cruising power at 2,500 rpm was 1,840 hp (1,372 kW) at sea level and 1,400 hp (1,044 kW) at 34,689 ft (11,000 m). The engine’s fuel consumption at cruise power was .454 lb/hp/hr (276 g/kW/h) at sea level. At 42,651 ft (13,000 m), an output of 1,710 hp (1,275 kW) at 2,900 rpm was possible with GM 1 (Göring Mischung 1 / Göring Mixture 1) nitrous oxide injection. The addition of MW 50 (Methanol-Wasser 50), a 50-50 mixture of methanol and water injected into the induction system, further boosted performance by approximately 400 hp (298 kW) up to the engine’s critical altitude. The engine was 8 ft 2 in (2.50 m) long. The Jumo 222 E weighed 3,009 lb (1,365 kg), and the Jumo 222 F weighed 3,075 lb (1,395 kg). First run in 1944, the engine initially received a high priority. However, development and plans for mass production of the Jumo 222 E/F were halted in mid-1944 to focus resources on the Jägernotprogramm (Emergency Fighter Program).

Reports indicate that the Jumo 222 E/F was flown in Ju 288 V9, and presumably it was also tested in a Ju 52. Heinkel He 219 V16 was planned to test Jumo 222 A/B-3 engines, but Jumo E/F engines were used instead when the aircraft made its first flight on 23 July 1944. Estimates indicated that the Jumo E/F-powered He 219 would be capable of 414 mph (666 km/h) at 32,808 ft (10,000 m) and 435 mph (700 km/h) with MW 50 injection at 26,247 ft (8,000 m). With the shift in priorities, He 219 V16 made less than 20 flights, and the project was abandoned by January 1945. Six Jumo 222 E/F engines were finished by war’s end, and another four were partially completed.

In early 1944, the Jumo 222 G/H (sometimes referred to as the Jumo 222 Turbo) was developed from the A/B-3 series with a 5.51 in (140 mm) bore, 5.31 in (135 mm) stroke, and 3,044 cu in (49.88 L) displacement. The engine incorporated a turbocharger and intercoolers. Running at 3,200 rpm, the Jumo G/H produced 2,400 hp (1,790 kW) for takeoff and 2,070 hp (1,544 kW) at 40,354 ft (12,300 m). At 2,900 rpm, the engine produced 1,970 hp (1,469 kW) at 41,339 ft (12,600 m). A single Jumo 222 B-2 was used as the G/H test engine and made 22 runs before the end of the war, but it was not installed in any test aircraft.


The Ju 288 V9 (B-series, four-man crew) with standard spinners in flight. Just visible is the annular radiator mounted inside the cowling. Note the lower rows of exhaust stacks under the cowling.

On 28 April 1944, the Otto-Mader-Werke at Dessau, which was developing the Jumo aircraft engines, was heavily damaged by an Allied bombing raid. As a result, the Jumo 222 program was relocated to Oberursel near Frankfurt. These events caused major delays with all tests and engine work then in progress.

Various versions of the Jumo 222 were flown in approximately 11 aircraft: three Ju 52 test beds, six Ju 288s (V5, V6, V8, V9, V12, and V14), one Fw 191 (V6), and one He 219 (V16). Jumo 222 engines were also planned for the Heinkel He 219B and C and the Hütter Hü 211 heavy fighters. Engines were not ready for the He 219B and C airframes, and the two Hü 211 prototypes were destroyed while under construction during an Allied bombing raid in December 1944. Some sources state that Jumo 222 engines were fitted to a four-engine Heinkel He 177 (V101), as the burned out remains of this aircraft were found at Cheb in Czechoslovakia. However, examination of the aircraft reveals the engine’s exhaust stacks were in the standard four and eight o’clock positions for a Daimler-Benz DB 603 engine rather than the 2, 6, and 10 o’clock positions for the Jumo 222. The Jumo 222 was proposed for numerous other aircraft designs ranging from fighters, like the Focke-Wulf Ta 152, to bombers, like the Heinkel He 177. However, none of these plans came to fruition. A total of 289 Jumo 222 engines were built.

The Jumo 225 was conceived back in 1937 as a development of the basic Jumo 222. The Jumo 225 was a 36-cylinder engine with six banks of six cylinders. With the original 5.31 in (135 mm) bore and stroke, the Jumo 225 displaced 4,245 cu in (69.57 L). The engine was forecasted to produce 3,500–4,000 hp (2,610–2,983 kW) at 3,000 rpm and was 8 ft 10 in (2.69 m) long. The Jumo 225 was never built.

While the Jumo 222 was not trouble-free, its development progressed as well as could be hoped for considering it was a new engine design, the repeated changes to engine requirements and design, and that the ongoing war resulted in material shortages. Some contend that the changing Ju 288 and Jumo 222 requirements were intentionally made to cause the aircraft and engine to fail.


The 2,500 hp (1,864 kW) Jumo 222 E displayed at the Deutsches Museum in Munich. The two-stage supercharger added to the engine’s overall length. Note the revised induction system that incorporated aftercoolers and new intake manifolds. (Deutsches Museum image)

Heinrich Koppenberg was the managing director of Junkers, the only German company producing both aircraft and aircraft engines. Koppenberg had become a powerful man who worked himself into various positions that gave him control over many strategic resources. Erhard Milch was the Air Inspector General of the Luftwaffe and in charge of aircraft production. He had gained increasing control over aircraft procurement in Germany. Milch felt that Koppenberg and Junkers would have an aircraft production monopoly and economically ruin other companies if the current Ju 288, Jumo 222, and other company projects were successful. New large-scale Junkers production orders meant that resources at other companies would be allotted to produce Junkers products under license rather than develop their own. Some contend that Milch began to alter the official requirements just as they were about to be met by Junkers. After Ernst Udet, head of the T-Amt (Technisches Amt, Technical Office of the RLM), committed suicide on 17 November 1941, Milch took his place. Milch now had the power to dictate programs for the Luftwaffe. Acting as the RLM’s authority, Milch continued to change project requirements, which left Junkers to perpetually chase the goal. Koppenberg was imprisoned in April 1942 when Junkers repeatedly failed to achieve what the RLM asked of them. While the above may be true, it is also true that the Jumo 222 had its own design issues. Brandner felt the engine was “developed to death” with its numerous displacement changes and constant design revisions.

In Spring 1944, Japan and Germany entered negotiations for Japan to purchase production rights for the Jumo 222. An agreement was reached in September 1944 that included drawings, sample parts, and the assistance of Brandner in exchange for 10 million Reichsmarks. The trip was to be made via submarine, and the departure date was set for mid-January. However, Brandner was shifted to resolve issues with the Jumo 004 turbojet in December 1944 and never went to Japan. It is not clear if Jumo 222 parts and plans were ever sent.

Brandner was captured by the Soviets at the end of the war and was interned in the USSR until 1953. While there, he worked on the M-222 engine design, which was essentially a reconstruction of the Jumo 222. Although the Soviets had captured five examples of the Jumo 222, the M-222 engine was never built. Among other projects, Brandner led a team that developed the 12,000 hp (8,948 kW) Kuznetsov NK-12 turboprop engine that powered the Tupolev Tu-95 Bear and other aircraft.

In addition to the Soviets, the United States and the British captured a number of Jumo 222 engines at the end of the war. A Jumo 222 E was built up by the United States Army Air Force at Wright Field with the intent to test the engine’s performance. While the engine was mostly complete by the end of 1946, other priorities took precedence, and the captured Jumo 222 E was never tested. Most likely, this engine was returned to Germany in 1978. It is now on display at the Deutsches Museum in Munich and is the only Jumo 222 known to exist.


This Jumo 222 E was captured and sent to the United States for testing. It was most likely the engine that Wright Field planned to test in late 1946. The engine was returned to Germany in 1978. Note the starter mounted above the gear reduction housing. (Deutsches Museum image)

– “The Junkers Jumo 222” by Kimble D. McCutcheon, Torque Meter Volume 6, Number 3 (Summer 2007)
Junkers Flugtriebwerke by Reinhard Müller (2006)
Flugmotoren und Strahltriebwerke by Kyrill von Gersdorff, et. al. (2007)
Ein Leben Zwischen Fronten by Ferdinand Brandner (1973)
Junkers Aircraft & Engines 1913–1945 by Antony Kay (2004)
Jane’s All the World’s Aircraft 1945/46 by Leonard Bridgman (1946)
Junkers Ju 288/388/488 by Karl-Heinz Regnat (2004)
Heinkel He 219 by R. Francis Ferguson (2020)
Dornier Do 217-317-417 An Operational Record by Manfred Griehl (1991)


Delage 12 GVis and 12 CDirs Aircraft Engines

By William Pearce

Louis Delâge was born in Cognac, France on 22 March 1874. He received an engineering degree in 1893 and started a career in the fledgling automobile industry in 1900. In 1903, Delâge joined the Société Renault Frères (Renault Brothers Company). By 1905, Delâge had a good sense of the incredible potential offered by the automotive industry and formed his own automobile company, la Société des Automobiles Delage (the Delage Automobile Company), in Levallois-Perret, just northwest of Paris.


The Delage 12 GVis seen with its Elektron crankcase side covers removed, revealing the magneto and generator. The engine is equipped with double helical propeller reduction gears. The lower engine support can be seen extending from the valve covers to the rear mount.

The Delage automobile was a success, and the company soon also began developing race cars. Delage racers won the 1908 Grand Prix de Dieppe, the 1911 Grand Prix de Boulogne-sur-Mer, the 1913 Grand Prix de France, and the 1914 Indianapolis 500. Racing and the production of passenger cars was halted during World War I, and Delage produced munitions and vehicles for the military. After World War I, Delage returned to the automotive business and began to produce luxury vehicles. In 1921, Albert Lory was hired as a designer, and he was put in charge of the competition department in 1923. That same year, Delage returned to racing. Lory designed the Delage 15S8 Grand Prix racer and its high-revving, straight-eight engine that won the Manufacturers’ Championship in 1927. The company withdrew from competition after this victory.

In 1930, Louis Delâge believed that the lessons learned through the development of the company’s compact and powerful automotive racing engines could be applied to aircraft engines. Lory was tasked with the development of two aircraft engines—the 12 GVis for fighter aircraft and the 12 CDirs for a Coupe Deutsch de la Meurthe racer. The two engines had similar layouts overall and mainly differed in their size. While there were no real restrictions on the fighter engine, the engine for the Coupe Deutsch de la Meurthe race had to be under 488 cu in (8.0 L).


The 12 GVis crankcase as it would be installed with the crankshaft at top: A) gear reduction mounting flange, B) camshaft housing, C) crankshaft mount, D) one of the four bolts extending through the crankcase, E) magneto mount, F) generator mount, G) studs for mounting the cylinder head, H) barely visible hole to receive a cylinder barrel, and I) pass through holes for the valve train’s pushrods.

The 12 GVis and 12 CDirs were water-cooled, inverted V-12 engines equipped with twin superchargers. The engines and their accessories were designed as a compact package with minimal frontal area to encourage better streamlining. Each engine consisted of a cast aluminum crankcase that also formed the lower part of the two cylinder banks, which had an included angle of 60 degrees. As later described, the two engines did have different styles of crankcase designs. Nitrided steel cylinder barrels were bolted via flanges to the two cast aluminum cylinder heads, which were then secured via studs to the crankcase. The cylinder barrels for each bank passed through a large, open water jacket space in the crankcase and were received by openings near the crankshaft. The balanced, one-piece crankshaft spun in roller bearings and was secured to the crankcase by seven main bearings. The crankcase was closed by an Elektron (magnesium alloy) cover. Side-by-side connecting rods with roller bearings were mounted to the crankshaft.

Each cylinder had two spark plugs, two paired intake valves, and two paired exhaust valves. The paired valves for all cylinders were actuated via rockers and pushrods from the engine’s single camshaft located in the Vee between the cylinder banks. A valve spring did not surround each of the valve stems. The spring for each valve pair was mounted adjacent to the valves and applied pressure to the valve pair via a levered arm. As the pushrod acted on the rocker to open the valve pair, the tip of the lever moved down with the valve stems. The opposite end of the lever moved up, further compressing the spring in its mount. The spring exerted tension on the lever to return and hold the valves in the closed position. Delage believed this system reduced the amplitude of the spring’s oscillations, increased the spring’s damping, and allowed for higher engine rpm. A valve rig was reportedly tested to the equivalent of 10,000 engine rpm, which means each valve had 5,000 actuations per minute.


Left, front view of the 12 GVis illustrating the engine compact structure. The barometric valve can be seen on the intake manifold between the cylinder banks. Right, rear view of the 12 GVis displaying the engine’s twin Roots-type supercharger. Note how the rear of the engine bolts to the mount.

Two Roots-type superchargers were mounted to the rear of the engine. These were of a similar design to the superchargers used on Delage automobiles. The superchargers were driven without clutches and directly from the engine at 1.67 (1.5 in some sources) times crankshaft speed. Via twin two-lobe rotors, the superchargers supplied 17.66 cu ft (500 L) of air per second to the intake manifold positioned in the Vee of the engine. The superchargers provided 14.5 psi (1.00 bar) of boost and enabled the engine to maintain its rated power up to 16,404 ft (5,000 m), at which altitude a barometrically-controlled bypass valve was fully closed. This valve prevented over boosting at lower altitudes and sustained a constant intake manifold pressure. The engine’s single carburetor was installed at the Y junction where the two superchargers fed into the intake manifold.

Some sources indicate that the French government ordered a single prototype of the 12 GVis and a single prototype of the 12 CDirs. However, other sources state that no orders for the 12 GVis were ultimately placed, and only a single order for the 12 CDirs was received. Both engines were proposed to power aircraft manufactured by Avions Kellner-Béchereau.


The 12 GVis as displayed at the 1932 Salon de l’Aéronautique. The engine and cowling represented a complete installation package that could be quickly attached to an aircraft. The access panels covering the magento and generator are removed. Note the valve cover protruding from the cowling and the oil cooler mounted above the engine.

The designation of the Delage 12 GVis stood for 12 cylinders, Grand Vitesse (High Speed), inverse (inverted), and suralimenté (supercharged). The engine had a 4.33 in (110 mm) bore and a 4.13 in (105 mm) stroke. Each cylinder displaced 61 cu in (1.0 L), and the engine’s total displacement was 731 cu in (11.97 L). The 12 GVis had a compression ratio of 5.5 (5.8 in some sources) to 1 and initially produced 450 hp (336 kW) at 3,600 rpm. It was believed that the engine’s output could be increased to 550 hp (410 kW) or even 600 hp (447 kW) with further development. The engine weighed 1,014 lb (460 kg). Two propeller gear reductions were offered: a .472 reduction via double helical gears, which was installed on the prototype, and a .528 reduction via Farman-type planetary bevel gears. The propeller turned counterclockwise.

The crankcase of the 12 GVis was cast with compartments on its sides to mount various accessories. A magneto was mounted in the compartment on each side of the engine, and a generator was mounted in the left-side compartment. The compartments were sealed with Elektron covers. The basic form of the engine and its crankcase created an aerodynamic installation that did not need to be covered by a cowling. The back of the 12 GVis was mounted directly to the airframe, and a conventional engine mount was not used. Four long bolts passed through the entire length of the crankcase to secure the engine to its mount. An additional lower support ran from the engine’s Vee to the rear mount. This support bolted to special pads on the inner sides of the valve covers. The engine was further secured by other mounting pads on its rear side.


The Delage 12 CDirs was a direct development from the larger 12 GVis. The engine had a more conventional crankcase without compartments for accessories. The large pipe on the crankcase was the outlet for the cooling water, and another outlet was present on the opposite side.

The 12 GVis was proposed for the Kellner-Béchereau KB-29 fighter, which was based on the KB-28 racer (see below). The 12 GVis was displayed in November 1932 at the Paris Salon de l’Aéronautique. The engine had a cowling covering its lower half, but the upper sides were uncowled, and the crankcase accessory covers were removed. A surface oil cooler was incorporated in a cowing panel mounted above the engine. The 12 GVis may have suffered from reliability issues and failed to complete an acceptance test. Ultimately, the KB-29 fighter was never built, and there were no other known applications for the 12 GVis.

The designation of the Delage 12 CDirs stood for 12 cylinders, Coupe Deutsch, inverse (inverted), réducteur (gear reduction), and suralimenté (supercharged). The engine had a 3.94 in (100 mm) bore and a 3.32 in (84.4 mm) stroke (some sources state 84.5 or 84 mm stroke). Each cylinder displaced 40 cu in (.66 L), and the engine’s total displacement was 485 cu in (7.95 L). The 12 CDirs had a compression ratio of 5.5 (5.2 in some sources) to 1 and initially produced 370 hp (276 kW) at 3,800 rpm. Development of the engine had increased its output to 420 hp (313 kW) at 4,000 rpm, and it was hoped that 450 hp (336 kW) would ultimately be achieved. The engine weighed 816 lb (370 kg). A .487 propeller gear reduction was achieved via double helical gears, and the propeller turned counterclockwise. While still somewhat aerodynamic, the 12 CDirs possessed a conventional crankcase and did not have the compartments that were incorporated into the 12 GVis. Accessories, including two vertical magnetos, were mounted to the rear of the engine. Engine mounting pads were positioned along each side of the crankcase, and the lower support and rear mounts similar to those used on the 12 GVis were employed.


Rear view of the 12 CDirs displaying the two vertical magnetos, two Roots-type superchargers, and the Y intake pipe. The right water pump can be seen under the supercharger. Note the brace extending from the valve covers to the rear of the engine.

The 12 CDirs passed an acceptance test running 53 hours at 4,000 rpm with no reported issues. The engine was installed in the Kellner-Béchereau KB-28 (also known as 28VD) Coupe Deutsch de la Meurthe racer. The aircraft incorporated a surface oil cooler in the front upper cowling, and surface radiators covered the wings. Flown by Maurice Vernhol, the 28VD made its first flight on 12 May 1933. The aircraft needed to qualify for the Coupe Deutsch de la Meurthe by 14 May, so there was little time for development of the airframe or engine. Based on previous tests, Vernhol felt that the ground-adjustable propeller was not utilizing the engine’s full power and requested that it be set to a finer pitch.

In the afternoon on 14 May 1933, Vernhol took off for a qualification flight. As he went to full throttle during his flight, the engine revved to an excess of 4,400 rpm—600 rpm over its intended limit. A coolant hose blew, and Vernhol was sprayed with steam and hot water. Partially blinded, Vernhol attempted an emergency landing, but misjudged the touchdown and hit the ground hard. The landing gear was sheared off, and the aircraft flipped upside down. The engine was torn free, and the fuselage broke behind the cockpit. Vernhol escaped with only minor injuries, but the 28VD was damaged beyond repair. No other aircraft are known to have flown with Delage engines.

Creating powerful and reliable aircraft engines that ran for long periods at high power proved to be more of a challenge than originally anticipated, and Delage abandoned its work on the type in 1934. The company was in a bad financial state and went into bankruptcy in April 1935. That same year, the Delage name and assets were purchased by the Delahaye automobile company.


The Kellner-Béchereau 28VD (KB-28) seen perhaps right before what may have been its last flight. The 28VD was the only aircraft to fly with a Delage engine. Capitaine Maurice Vernhol sits low in the cockpit, illustrating the aircraft’s limited forward visibility. Jacques Kellner is at left, standing next to Louis Delâge. Albert Lory can be seen on the other side of the cockpit. Kellner joined the French Resistance during World War II and was executed by the Nazis on 21 March 1942. Delâge’s automotive company was a victim of the Great Depression and was sold off in April 1935. He died nearly destitute in 1947. Lory went on to design the SNCM 130 and 137 aircraft engines and then worked for Renault after the war.

– “Les Moteurs d’aviation francias en 1935” by Pierre Léglise, L’Aéronautique No 191 (April 1935)
Aerosphere 1939 by Glenn D. Angle (1939)
– “Le Coupe Deutsch de la Meurthe” by L. Hirschauer, L’Aérophile 14 Annee No 6 (June 1933)
– “The 1933 Contest for the Deutsch de la Meurthe Trophy” by Pierre Léglise, L. Hirschauer, and Raymond Saladin, National Advisory Committee for Aeronautics Technical Memorandum No. 724 (October 1933)
Delage, France’s Finest Car by Daniel Cabart, Claude Rouxel, and David Burgess-Wise (2008)
Les Moteurs a Pistons Aeronautiques Francais Tome I by Alfred Bodemer and Robert Laugier (1987)
– “Les moteurs d’aviation Delage” La Vie Automobile (25 November 1932)
Jane’s All the World’s Aircraft 1933 by C. G. Grey (1933)
– “Le Kellner-Béchereau 28V.D.” by Michel Marrand, L’Album du Fanatique de L’Aviation 23 (June 1971)


Kellner-Béchereau 28VD Air Racer

By William Pearce

Société Kellner was a French luxury coachbuilder run by Georges Kellner. During World War I, the company turned to producing SPAD VII, S.XI, and S.XIII fighter aircraft under license. The SPAD (Société Pour L’Aviation et ses Dérivés / Company for Aviation and its Derivatives) aircraft were designed by French aeronautical engineer Louis Béchereau. After World War I, Société Kellner returned to coach making, and SPAD went out of business. Béchereau progressed through a number of companies until 1926, when he founded the Société pour la Réalisation d’Avions Prototypes (SRAP / Prototype Aircraft Company).


The Kellner-Béchereau 28VD under construction. The cowling attached to the very front of the aircraft contained the surface oil cooler. The top of the coolant tank is visible just behind the fairing atop the engine. Note the fuel tanks forward and aft of the cockpit.

Société Kellner was taken over by Jacques Kellner after his father’s passing. Jacques was an aviation enthusiast and wanted to steer the company back to being involved with aviation. In 1931, Jacques Kellner joined forces with Louis Béchereau to form Avions Kellner-Béchereau in Boulogne-Billancourt, France. Kellner-Béchereau immediately began designing aircraft, and one of their first concepts was that of the 28VD (also known as KB-28), an air racer intended for the 1933 Coupe Deutsch de la Meurthe. The Coupe Deutsch de la Meurthe was a race to cover 1,242 miles (2,000 km) with a mandatory 90-minute stop at 621 miles (1,000 km), and aircraft were limited to using a single engine with a displacement no greater than 488 cu in (8.0 L). Additional stops could be made but were not mandatory and would count against the total time to finish the course. Ten laps of the 124-mile (200-km) course would complete the race, and the rhombus-shaped course was laid out with towns of Chartres, Moisy, Orléans, and Étampes at its corners. The Étampes-Mondésir airfield was the start and finish point, and the prize in 1933 was four million Francs.

The Kellner-Béchereau 28VD was a low-wing taildragger made almost entirely of metal, and its design was tested in a wind tunnel. The aircraft’s slim monocoque fuselage was of all-aluminum construction with an open cockpit at its center. A sloped fairing led up to the cockpit, and an extended headrest trailed from it. This resulted in the pilot sitting rather low with little forward visibility, but side visibility was quite good. Fuel tanks were housed in front of and behind the cockpit. The aircraft’s vertical and horizontal stabilizers were made of aluminum, but the rudder and elevators were made of wood. The angle of the horizontal stabilizers was adjustable and could be altered to trim the aircraft while in flight. An aerodynamic fairing partially covered the tailskid.


The 28VD undergoing final touches. This image gives a good view of how the surface radiators wrapped around the wing’s leading edge. Note the large Ratier metal propeller. Intakes to the engine’s superchargers can just been seen on the cowling’s undersides.

The relatively-short, cantilever wings of the 28VD were attached to the fuselage by a main spar at its center and a rear spar. The wings were further supported by false front and rear spars. A large aileron ran almost the entire length of the wing’s trailing edge and was attached to the false rear spar. Wing construction kept its interior mostly open, and three fuel tanks were positioned in each wing. Each of the wing tanks was equipped with a quick-drain dump valve 3.94 in (10 cm) in diameter. For the valve, carbonic acid gas was fed into a space that blew out a lower seal, allowing an upper plug to fall free followed by the contents of the fuel tank. Although not specifically stated, it is presumed that the pilot would control the flow of the carbonic acid gas to initiate the fuel dump. It is not clear if the fuselage tanks were also equipped with a dump valve.

The upper surface of each wing was covered with radiators in five sections. Each surface radiator section consisted of a forward and rear part. The front radiator for each section curved around the front of the wing to form the leading edge. The inner three radiator sections terminated shortly after making the turn to the wing’s underside. The outer two sections continued around the leading edge to cover the front half of the underwing, and additional radiators covered the rear outer surface under the wing. Water from the coolant tank installed above the engine flowed through pipes in the wing’s leading and trailing edges and then into the surface radiators. After passing through the radiator, the cooled water was collected in a tube running along the center spar and returned to the engine. A large fairing connecting the wing’s trailing edge to the fuselage contained a number of louvers to allow heat, vapors, and moisture to escape from the wing.


The newly completed 28VD is rolled out of the hangar for testing. The aircraft’s streamlining and slim fuselage are apparent. This image provides a good view of the landing gear’s arched supports. For retraction, the top of the gear leg slid toward the wingtip, and the lower gear leg pivoted around the arched support.

Mounted under the inboard sections of the wings was the partially-retractable main landing gear, which had a 4 ft 10 in (1.48 m) track. When extended, a fixed ball at the top of each gear leg was locked into place, and the leg itself was supported by an arched member attached to the fuselage. The ball atop the gear leg was mounted in a channel in the wing. To retract the gear, a retraction lever released the downlock and bled pressure in a cylinder, which unlocked a drum and allowed a cable to unwind. As the gear leg pivoted around its arched support, an elastic cable pulled the top of the gear leg toward the wing tip until the gear leg rested against the underside of the wing. An uplock under the inner wing secured the gear leg in the retracted position, and the arched support provided a crude aerodynamic fairing. To extend the gear, an extension lever released the uplock and fed pressurized air into a cylinder. The piston in the cylinder rotated a drum which wound a cable. The cable was attached to the upper gear legs and pulled them inboard against the tension of the elastic cable. Once the cable had pulled the gear to its extended position, the ball atop the gear leg was secured by the downlock.

Housed in a streamlined, close-fitting cowling at the front of the 28VB was the Delage 12 CDirs engine. Built by la Société des Automobiles Delage (the Delage Automobile Company), the engine was specially made for the Coupe Deutsch de la Meurthe race. Its “12 CDirs” designation stood for 12 cylinders, Coupe Deutsch, inverse (inverted), réducteur (gear reduction), and suralimenté (supercharged). The 400 hp (298 kW) engine was a water-cooled V-12 with twin-Roots superchargers. The 12 CDirs had a 3.94 in (100 mm) bore, a 3.31 in (84 mm) stroke, and a displacement of 483 cu in (7.92 L). Intakes in each side of the lower cowling brought in air to the engine’s superchargers. Exhaust was expelled through individual stacks protruding from the cowling. A saddle water tank sat atop the rear part of the engine. A U-shaped oil tank was installed between the engine and the propeller. A surface oil cooler was positioned atop the engine and covered the area between the water tank and the spinner. The engine turned a two-blade, metal, ground-adjustable Ratier propeller that was approximately 7 ft 9 in (2.37 m) in diameter.


Elevated view of the 28VD illustrates the surface radiators covering the upper wings. Note the vents in the wing’s trailing edge fairing. The race number “5” has been applied to the fuselage. This image was most likely taken on 14 May 1933, the day of the accident, as the aircraft is prepared for its qualification flight.

The Kellner-Béchereau 28VD had a wingspan of 21 ft 10 in (6.65 m), a length of 23 ft 6 in (7.16 m), and a height of 8 ft 8 in (2.64 m). The aircraft weighed 2,176 lb (987 kg) empty and 3,527 lb (1,600 kg) fully loaded. The 28VD had an anticipated top speed of 249 mph (400 km/h) and a cruising speed of 214 mph (345 km/h). On 5 May 1933, the aircraft was moved to the Étampes-Mondésir airfield where it would be completed for the Coupe Deutsch de la Meurthe, to be held on 28 May. Qualifying for the race was scheduled 8–14 May, which left very little time for flight testing. The 28VD was given race number 5 and made its first flight on 12 May. Armée de l’Air Capitaine Maurice Vernhol conducted the very brief flight tests, which did not reveal any issues, and would fly the 28VD for the race. Refining and preparing the aircraft used up most of the qualifying time. Based on previous tests, Vernhol felt that the engine’s full power was not being utilized and requested that the propeller be adjusted to a finer pitch.

During an afternoon qualification flight on 14 May 1933, Vernhol added full power, and the engine revved to an excess of 4,400 rpm—over 600 rpm more than its maximum limit. At that moment, a coolant hose blew free from its mount, and Vernhol was enveloped in a shower of steam and hot water. It is not clear if the increased coolant pressure from the engine overspeed caused the hose to blow free, or if it was just bad timing. Regardless, Vernhol was blinded by the spray and attempted an emergency landing near Ville Sauvage, north of the Étampes-Mondésir airfield. In his impaired condition, Vernhol misjudged the landing, and the 28VD hit the ground hard. The extended landing gear broke off, and the aircraft flipped upside down, tearing off the engine and breaking the fuselage behind the cockpit. Amazingly, Vernhol escaped with only minor injuries, but the 28VD was completely destroyed. A Potez 53 flown by Georges Détré went on to win the 1933 Coupe Deutsch de la Meurthe at a speed of 200.58 mph (322.81 km/h).

Kellner-Béchereau also designed a fighter along the same lines as the 28VD / KB-28. Known as the KB-29, the fighter was powered by a 550 hp (410 kW), 731 cu in (11.97 L) Delage 12 GVis inverted V-12 engine. The engine was displayed at the 1932 Paris Salon de l’Aéronautique, but the KB-29 fighter never materialized.


The remains of the 28VD after its forced lading. The landing gear and engine have been ripped away, and the fuselage is broken at a right angle behind the wing. The surface radiators under the outer wing are visible. The circular openings seen in the wing’s underside are the dump valves for two of the three fuel tanks.

– “Les avions de la Coupe Deutsch de la Meurthe 1933” by Pierre Léglise, L’Aéronautique No 171 (August 1933)
– “L’éphémère Kellner-Bechereau KB 28” by Robert J. Roux, Le Fana de l’Aviation No 253 (December 1990)
– “Le Kellner-Béchereau 28V.D.” by Michel Marrand, L’Album du Fanatique de L’Aviation 23 (June 1971)
– “Le Coupe Deutsch de la Meurthe” by L. Hirschauer, L’Aérophile 14 Annee No 6 (June 1933)
– “The 1933 Contest for the Deutsch de la Meurthe Trophy” by Pierre Léglise, L. Hirschauer, and Raymond Saladin, National Advisory Committee for Aeronautics Technical Memorandum No. 724 (October 1933)


Guidobaldi 1939 Tilting-Body Prototype Racer

By William Pearce

Francois Guidobaldi was born in 1888 and lived in Antibes, France, near Nice and the Italian boarder. In the early 1900s, Guidobaldi became a cycling champion and started to focus on mechanics and engineering. He filed around 28 patents over his lifetime, with a carburetor for automobiles being one of the first, awarded in 1912. In the late 1920s and early 1930s, Guidobaldi was a team mechanic for Benoît Falchetto, who drove Bugatti racers. During that same period, Guidobaldi either founded or worked for the Société anonyme, moteurs à explosion pour aviation, marine et automobiles (MEAMA / the Combustion Engines for Aviation, Marine and Automobiles Corporation), at which he designed and built an air-cooled, two-row, 10-cylinder aircraft engine.


Francois Guidobaldi started work on his race car in 1939, and it took two decades to finish. Looking similar to a late 1930s Auto Union Grand Prix racer, the car’s body hides its unusual suspension system that enabled the chassis to lean into turns and its custom two-stroke, air-cooled, eight-cylinder radial engine. (Cyril de Plater image)

After lengthy consideration and planning in the mid-1930s, Guidobaldi began work on a race car. Guidobaldi’s car would incorporate a number of his ideas on how to improve handling—namely, the body and wheels would tilt in toward the curve when the vehicle was in a turn. This lean would help minimize lateral g-forces and improve the vehicle’s stability. Work on Guidobaldi’s engine design and the car’s chassis development started around 1939. The car’s basic mid-engine layout was similar to that of the Auto Union Grand Prix racers that were very successful in the late 1930s. However, the outbreak of World War II and material shortages after the war caused Guidobaldi to make slow progress on his car, which at times was called the “Guidomobile.”

They chassis of Guidobaldi’s car consisted of two large tubular steel side rails connected by various cross members. Triangular structures at the front and rear of the chassis attached it to the vehicle’s independent suspension. The suspension consisted of a series of rubber dampers sandwiched between steel plates. The chassis mounting point near the top of the triangular suspension structure enabled the chassis to hang and swing like a pendulum from the mount. While in a turn, centrifugal force would swing the chassis and prevent the buildup of lateral g-forces. At the same time, the suspension was engineered so that it would articulate with the body and the steering so that the tires leaned into the turn. The net result of the design was that the car took turns somewhat like a motorcycle. Strong springs connecting the upper suspension links to the chassis centered the chassis when the vehicle was traveling in a straight line and helped moderate the centrifugal effect when in a curve.


This picture appeared in a French newspaper in 1951. However, if Francois Guidobaldi is in the driver’s seat, he is much too young for the picture to have been taken in 1951. It is possible that the picture was taken much earlier and near the start of the car’s construction in 1939. Note the angle of the chassis and rear tires as they lean into the turn.

The driver sat in a low cockpit at the center of the car. The gas tank was located behind the cockpit and extended forward along both sides of the driver at the bottom of the cockpit. The engine was positioned between the fuel tank and the rear suspension mount. Mounts for the engine were clamped to the tubular frame rails. The three-speed transaxle with reverse gear was positioned under the rear suspension mount. At all four corners, the car had Bugatti knock-off wheels and Bugatti finned drum brakes.

Perhaps the only thing more unusual than the car’s leaning chassis was its engine. Guidobaldi designed, built, and installed into his car a two-stroke, eight-cylinder, air-cooled radial engine. The engine was placed horizontally (crankshaft was vertical) to get the car’s center of gravity as low as possible. From the drive side of the engine (under the car), a shaft extended forward to power two Roots-type superchargers built by Bugatti, and another shaft extended to the rear to power the transaxle. Two Guidobaldi-designed carburetors added the fuel. From the supercharger, the air and fuel mixture was delivered to the cylinders via intake manifolds under the car.


The “Guidomobile’s” engine package being tested. Laying a radial engine flat provided a low center of gravity, but it also complicated the drive arrangement. The two Bugatti superchargers on the left were driven via a single shaft from the engine. Note the individual exhaust stacks above the frame rail.

Intake and exhaust ports were on the drive side of the engine, facing the ground. An intake valve was positioned in each cylinder head and controlled via a rocker and pushrod by a cam ring atop the engine. The exhaust port was located on the cylinder just below the intake port. The flow of exhaust was controlled by the piston uncovering and covering the port. Exhaust from each cylinder flowed into an exhaust stack, with four stacks exiting horizontally on each side of the car. Two magnetos were mounted horizontally on the top (non-drive) side of the engine. Each magneto fired one of the two spark plugs mounted in the cylinder and flanking the intake valve. The engine was started via a remote starter engaged through the transaxle at the rear of the car.

The engine’s exact displacement is a bit of a mystery. One publication lists the bore and stroke as 2.36 in (60 mm), which would give a displacement of 83 cu in (1.36 L). However, many other publications state the engine’s displacement was either 61 or 67 cu in (1.0 or 1.1 L), which would result in a bore and stroke of approximately 2.17 in (55 mm). The engine was later enlarged to 91 cu in (1.5 L). If the bore and stroke were originally 2.36 in (60 mm), the bore would have been increased to 2.48 in (63 mm) to achieve a total displacement of 91 cu in (1.5 L). However, if the bore and stroke were originally 2.17 in (55 mm), then the bore would need to be increased to 2.60 in (66 mm) to reach a displacement of 91 cu in (1.5 L). It seems more reasonable to increase the bore of the air-cooled cylinders by .12 in (3 mm) than it does by .43 in (11 mm). Regardless of its actual displacement, the engine produced 180 hp (132 kW) at 6,500 hp in its original form. The engine’s power rating at 91 cu in (1.5 L) has not been found, but was presumably around 200 hp (147 kW). At some point after 1960, the two Bugatti superchargers were replaced by a single Roots supercharger of Guidobaldi’s own design.


The bodiless “Guidomobile” on display at the Exposition Automobile de Nice in 1956. An aged Francois Guidobaldi stands at center holding his hat. The triangular suspension structures are apparent, as is the low-mounted engine. The circular mounts near the top of the suspension structures are the pivot points for the chassis, allowing it to swing.

Guidobaldi built the car almost entirely by himself, even making wooden cores to create clay molds for casting parts. The main structure of the chassis was seemingly complete by 1951, and the unbodied car was displayed at the Exposition Automobile de Nice in 1956. Some sources state the Guidobaldi undertook test drives in the late 1950s on the winding roads in the Maritime Alps. There are accounts that the car gave an unsettling ride while traversing curvy roads. The chassis would rise and fall as the suspension leaned back and forth, subjecting driver to movement in all directions. It is not clear when the aluminum body was added to the car, and no pictures of the original body have been found. A new body was constructed in 2010 when the car was restored. The new body reportedly follows the aesthetics of the original body, which had been badly damaged over the years.

The aluminum body built in 2010 covers the entire chassis. Large cutouts are present by each wheel to allow room for the suspension’s travel. A number of inlets provide ample cooling air to the engine. Air from the from grille passes through the entire body. A large scoop on each side of the car, just behind the front wheels, delivers cooling air to the engine. Two smaller scoops atop the engine cowling provide further cooling. A number of louvers behind the engine help the heated air leave the engine compartment. During the 2010 restoration, the exhaust stacks were lengthened and turned up 90 degrees to exit the top of the car’s sides.


Side view of Guidobaldi’s restored car illustrates the cooling air scoops just behind the front wheel and on the side of the engine compartment. Note the numerous louvers and vertical exhaust stacks. The fuel filler cap is just behind the driver’s headrest. (Cyril de Plater image)

Guidobaldi had always planned to build a passenger car using the same leaning chassis concept, but no such car was ever built. In the 1960s, a number of automobile manufacturers had an interest in Guidobaldi’s car. Perhaps the most interested was Mercedes-Benz, but negotiations failed to yield any agreement. Guidobaldi predicted his race car could achieve a top speed of 174 mph (280 km/h) and had eyed Formula 1 as a testing ground, but a lack of funds curtailed his aspirations. The expenses of building the car and filing patents left Guidobaldi with little extra money. On 6 August 1971, Guidobaldi passed away. His car had already been locked away and nearly forgotten.

In 1980, Antoine Raffaelli purchased the car from Guidobaldi’s son, Virgile. The car was then sold to Adrien Maeght in 1984. Maeght displayed the car at the Musée de l’Automobile à Mougins until the museum closed in early 2009. At that time, Guidobaldi’s car was purchased by David Humbert, who ordered a total restoration. Luc Franza completed the restoration to running order in 2010, and the restored “Guidomobile” debuted at the 8th Avignon Motor Festival in March. The car was then displayed at the Monaco Motor Show in June 2010 and in March 2014 at the

Concours d’Elegance du Monaco, where it won first prize in the technology category. Starting in September 2014, the car was displayed at the Cité de l’Automobile – Musée National, Collection Schlumpf in Mulhouse, France. In late 2019, and still in perfect condition, the “Guidomobile” was offered for sale. The vehicle serves as a lasting tribute to all engineers who chase their dreams.


Rear view of the “Guidomobile” shows the car with a slight lean into a right turn. Note the different angles of the left and right rear suspension arms. Just visible at the top of the car is the rubber damper system for the rear suspension. (Cyril de Plater image)

– “Un mécanicien d’Antibes a réalisé cette monoplace de 180 Ch (Formule 1)” Supplement à l’Automobile N°107 (March 1955)
– “La voiture révolutionnaire de F, Guidobaldi” by Sven-Ake Nielsen, l’Automobile N°157 (March 1959)
– “The Leaning Car” by Sven-Ake Nielsen, Sportscar Graphic (April 1960)
– “Un rêve d’inventeur” by Dominique Pascal, Auto Passion N°6 (September 2006)
– “Un chef d’oeuvre ressuscité” by Philippe Loisel, La vie de l’Auto N°1424 (16 September 2010)
– “Road Vehicle Tilting Inwardly in Curves” US patent 2,791,440 by Francois Guidobaldi (granted 7 May 1957)


Curtiss XP-23 / YP-23 Hawk Biplane Fighter

By William Pearce

On 8 July 1931, the United States Army Air Corps (AAC) issued production contract W535-ac-4434 to the Curtiss-Wright Corporation for the production of 46 P-6E Hawk fighter aircraft. The P-6E was one of many variants that had branched from the P-6 line, which originated in 1928. The basic P-6 was a refined P-1 equipped with a Curtiss V-1570 Conqueror engine; however, the 46th aircraft from contract W535-ac-4434 would not be finished as a P-6E. Rather, it would become the Model 63, which carried the AAC designation XP-23. In the early 1930s, the AAC was interested in exploring advancements with turbosuperchargers to create a fighter capable of high speeds at high altitudes, and the XP-23 was an opportunity to create just such an aircraft.


The Curtiss XP-23 Hawk with an unidentified individual (contact us if you can ID). Visible is the large turbosupercharger, its intake, and the two exhaust pipes feeding the turbine. Note the engine coolant radiator between the main gear.

The Curtiss XP-23 was a single engine biplane with conventional fixed taildragger undercarriage. The only components the aircraft had in common with a P-6E were the wings, although some sources state that the wings had a spar and rib frame built of metal rather than wood. Whether it was made of wood or metal, the wing’s frame was covered in fabric. The upper wing had a 1.5-degree dihedral, was mounted 4 in (102 mm) higher than on the P-6E, and was positioned 28.5 in (724 mm) forward of the lower wing. The lower wing had no dihedral and was 5 ft 6 in (1.68 m) shorter in span. Ailerons were located on the upper wing only.

The aircraft’s monocoque fuselage and tail were of all-metal construction. The main and reserve fuel tanks were housed forward of the cockpit and held a total of 78 US gallons (65 Imp gal / 295 L). The oil tank held 11 US gallons (9 Imp gal / 42 L). A .30-cal machine gun was mounted on each side of the aircraft just forward of the cockpit. A long blast tube extended from each gun, through the engine bay under the exhaust, and exited just behind the spinner. Some sources indicate the armament was one .30-cal and one .50-cal machine gun, while other sources state two .30-cal and one .50-cal machine gun. It is not clear where the third gun would have been located, if indeed there was one. Aerodynamic fairings covered the main wheels except for their outer side.


Side view of the XP-23 illustrated the aircraft’s rather smooth, all-metal finish. Note the machine gun port just under the engine’s exhaust and the left-handed (counterclockwise) propeller. The image was dated 12 April 1932, four days before the aircraft was accepted by the AAC.

The XP-23 was powered by a liquid-cooled Curtiss V-1570 Conqueror V-12 engine, which was equipped with a General Electric F-2C turbosupercharger. The turbosupercharger was externally mounted to the left side of the engine. Exhaust from the left cylinder bank was fed directly into the turbosupercharger, and exhaust from the right cylinder bank was ducted through the cowling just behind the engine and to the turbosupercharger. The intake was just forward of the turbosupercharger. The engine did not have a mechanically-driven supercharger or blower.

The turbosupercharger enabled the V-1570 engine to produced 600 hp (447 kW) at 2,400 rpm from sea level to 15,000 ft (4,572 m). The V-1570 had a 6.1 to 1 compression ratio and consumed 60 US gph (50 Imp gph / 227 L/h) at full throttle and 36 US gph (30 Imp gph / 136 L/h) at 2,100 rpm (cruise power / 88% throttle). At a .500 reduction, the engine turned a metal, three-blade, ground-adjustable Hamilton Standard propeller that was 9 ft 6 in (2.90 m) in diameter. Mounted under the engine and between the main gear was the radiator for the engine’s ethylene glycol cooling system.


The drag-inducing installation of the side mounted turbosupercharger is illustrated in this rear view of the XP-23. Note the reduced span of the lower wing.

The XP-23’s upper wing had a span of 31 ft 6 in (9.60 m), and its lower wing had a span of 26 ft (7.92 m). The aircraft had a length of 23 ft 9 in (7.24 m) and a height of 8 ft 9 in (2.67 m). The XP-23’s top speed was 223 mph (359 km/h) at 15,000 ft (4,572 m) and 178 mph (286 km/h) at sea level. The aircraft’s cruising speed was 192 mph (309 km/h) at 15,000 ft (4,572 m), and its stalling speed was 69 mph (111 km/h) at sea level. The XP-23 had an initial climb rate of 1,370 fpm (6.96 m/s), and its service ceiling was 32,000 ft (9,754 m). The aircraft’s range was 292 miles (470 km) at full throttle and 435 miles (700 km) at cruise power. The XP-23 had an empty weight of 3,142 lb (1,425 kg) and a gross weight of 4,032 lb (1,829 kg).

The XP-23 was allotted serial number 32-278 and built at the Curtiss Airplane Division Plant 1 on Kenmore Avenue in Buffalo, New York. The aircraft was accepted by the AAC on 16 April 1932 at a cost of $12,279.36. Although the XP-23’s performance met expectations, there is some indication that the turbosupercharger overheated and was unreliable. Regardless, the age of biplane fighters was at an end, and the XP-23 was the last biplane fighter accepted by the AAC. The Boeing P-26 Peashooter prototype was the AAC’s first monoplane fighter to enter service and made its first flight on 20 March 1932. The P-26 out-performed the XP-23 and showed that the monoplane type was the future.


The YP-23 with the turbosupercharger removed and a two-blade propeller installed. It also appears that either a support was installed between the main wheels or that a fairing was installed over the existing brace wires.

Curtiss had proposed powering the XP-23 with a V-1800 Super Conqueror engine. The V-1800 had a mechanically-driven supercharger that eliminated the bulbous side-mounted turbosupercharger previously used on the XP-23 and resulted in a much cleaner cowling. The engine produced 800 hp (597 kW) at 2,400 rpm and turned a 10 ft (3.05 m) diameter, metal, three-blade, ground-adjustable Hamilton Standard propeller at a .714 reduction. With the V-1800, the XP-23 had an anticipated top speed of 234 mph (377 km/h) at 12,000 ft (3,658 m) and a cruise speed of 199 mph (320 km/h). At 23 ft 11 in (7.29 m) long and 3,227 lb (1,464 kg) empty, the aircraft was 2 in (51 mm) longer and 85 lb (39 kg) heavier than the V-1570-powered variant. Curtiss did note that the wing might need to be moved forward slightly to achieve a proper center of gravity. However, the V-1800 was never installed in the XP-23.

The sole XP-23 was modified by removing the turbosupercharger, but the V-1570 was retained. It is not clear if the modifications were in anticipation of further changes to incorporate the V-1800, or if it was done to compare the turbosupercharger setup to the normally-aspirated V-1570. With the turbosupercharger removed, the aircraft became commonly known as the YP-23. The engine’s air intake was positioned atop the cowling, a two-blade propeller was fitted, and its armament was removed. In this configuration, the YP-23 achieved 200 mph (322 km/h) at 15,000 ft (4,572 m).


A new cowling was made for the YP-23 that did not incorporate gun ports below the engine’s exhaust stacks. Note the intake atop the cowling and the Wright “Arrowhead” painted on the fuselage. The aircraft as pictured is similar in appearance to the proposed V-1800-powered XP-23.

The YP-23 underwent one last round of modifications to explore the effects of radiator drag on high-speed aircraft. The coolant radiator was removed, the V-1570 engine was switched to a total-loss water cooling system, and the aircraft’s main fuel tank was used as a water reservoir. Using fuel from the reserve tank, cooling water flowed through the engine at a reduced rate from the main tank and was then vented overboard. The previous deletion of the turbosupercharger and the removal of the radiator gave the YP-23 an exceptionally clean appearance. Unfortunately, test results of these modifications have not been found. It is possible that thorough testing was never conducted since monoplanes offered higher performance. The YP-23 was disassembled, and its wings were reportedly used on the XF11C-1 Goshawk prototype fighter for the United States Navy.


The YP-23 in its final form with the radiator removed and serving as the AAC’s last biplane fighter design. While the aircraft exhibits an exceptionally clean appearance, its flight endurance was very short with its total-loss cooling system.

Curtiss Fighter Aircraft by Francis H. Dean and Dan Hagedorn (2007)
Curtiss Aircraft 1907–1947 by Peter M. Bowers (1987)
U.S. Fighters 1925 to 1980s by Lloyd S. Jones (1975)
American Combat Planes of the 20th Century by Ray Wagner (2004)


Wright H-2120 Hexagonal Engine

By William Pearce

In April 1926, the Curtiss Aeroplane and Motor Company (Curtiss) initiated the design of a 600 hp (447 kW) air-cooled aircraft engine. The engine was of a “hexagonal” design, with six banks of two cylinders, and had a relatively small diameter. Known was the H-1640 Chieftain, the two-row engine experienced some cooling issues and was abandoned shortly after the merger of Curtiss with Wright Aeronautical (Wright) in July 1929.


The liquid-cooled Wright H-2120 was developed from the air-cooled Curtiss H-1640 Chieftain. The engine was designed when experiments with two-row radials had just begun and concerns existed about air-cooling being sufficient for the rear cylinders.

In 1930, the United States Navy (Navy) initiated a special “high-speed development program” to challenge the success achieved by foreign high-speed aircraft, especially those demonstrated in the 1929 Schneider Trophy contest. Wright resurrected the hexagon engine design to further exploit its relatively small diameter. Using the H-1640 as a foundation, a liquid-cooled engine with an increased bore and stroke was designed by Wright. The new six-bank engine was to ultimately have four cylinders per bank, giving the 24-cylinder engine a displacement of 4,240 cu in (69.5 L) and an output of over 2,000 hp (1,491 kW). However, development was initiated with just two cylinders in each bank, and the 12-cylinder engine was known as the H-2120.

In June 1931, the Navy issued Contract No. 22625 to Wright for the development of two 1,000 hp (746 kW) H-2120 engines. From these developmental engines, a service type was to be derived. The Navy, always with an interest in air-cooled engines, stipulated that an air-cooled version was to be developed as either a companion to or a replacement of the liquid-cooled version. The Navy felt the air-cooled H-2120 could serve as competition and a backup to the 870 hp (649 kW), air-cooled, 14-cylinder Pratt & Whitney R-2270 radial, which was under development.

In a sense, the Wright H-2120 was three V-4 engines on a common crankcase, which created its hexagonal shape when viewed from the front. The two-row engine had an aluminum, three-piece crankcase that was split vertically at the centerline of the cylinders. The crankcase sections were secured together with bolts positioned between the cylinder banks. The single-piece, two-throw, crankshaft was supported by three main bearings. An odd connecting rod arrangement consisted of one blade rod, four articulated rods, and one fork rod. However, the blade and fork rod moved as a unit, as the pins that held the articulated rods passed through both the blade rod and the fork rod. The connecting rod arrangement was referred to as having dual master rods, with both the blade rod and fork rod technically considered master rods.


With six cylinder banks, the front view of the H-2120 illustrates its hexagonal shape. Note the coolant manifolds at the front of the engine.

The cylinder banks were spaced at 60-degree intervals around the crankcase, with the left and right banks perpendicular to the engine. The individual cylinders had a steel barrel surrounded by a steel water jacket. Each cylinder pair that formed a bank had a common cylinder head. Each cylinder had two intake valves and two exhaust valves, all actuated by dual overhead camshafts. The camshafts for each cylinder bank were geared to a vertical shaft driven from the front of the engine. The cylinders had a compression ratio of 6.5 to 1.

Mounted to the front of the engine was a planetary gear reduction that turned the propeller shaft at .6875 times crankshaft speed. At the rear of the engine was a single-speed supercharger that turned at 5.45 times crankshaft speed. Air was drawn through a downdraft carburetor, mixed with fuel, and compressed by the supercharger’s 11 in (279 mm) impeller. The air and fuel mixture was distributed to each of the six cylinder banks by a separate manifold. Each manifold had four short runners to deliver the charge to each cylinder’s two intake ports. The cylinder banks were arranged so that their intake and exhaust sides were mirrored with the adjacent cylinder banks. Each cylinder’s two spark plugs were fired by magnetos positioned at the rear of the engine. Coolant for the top four cylinder banks was circulated up from the base of each cylinder water jacket and through the cylinder head. Coolant for the lower two cylinder banks was the reverse—it flowed through the inverted head and up to the base of the water jacket.

The Wright H-2120 had a 6.125 in (156 mm) bore, a 6.0 in (152 mm) stroke, and a total displacement of 2,121 cu in (34.76 L). The engine had a sea level rating of 1,000 hp (746 kW) at 2,400 rpm with 2.2 psi (.16 bar) of boost, and it had a takeoff rating of 1,100 hp (820 kW). The H-2120 was 49 in (1.24 m) in diameter and was 57 in (1.45 m) long. The engine weighed 1,440 lb (653 kg).


Side view of the first H-2120 illustrates the relatively short length of the engine. Note the supercharger housing and the intake manifolds.

The first H-2120 engine carried the Wright Manufacture’s No. 11691 and the Navy Bureau of Aeronautics No. (BuNo) 0120. The BuNo is often incorrectly recorded as 0210 or 0119 in Wright and Navy documentation. The H-2120 engine encountered issues that delayed its development. The issues were mainly focused on the connecting rod arrangement. Several different connecting rod arrangements were tested and discarded before the dual master rod type was adopted. The engine was first run in late 1933 or early 1934. It failed a 50-hour endurance test conducted by Wright in January 1935, but the cause of the failure has not been found. The test involved 10 cycles of running the engine for 30 min at 1,000 hp (746 kW) and 4.5 hours at 900 hp (671 kW). The endurance test was rerun, and the H-2120 passed on 10 May 1935.

The Army Air Corps (AAC) was seeking an engine capable of 1,250 hp (932 kW) for takeoff and had been following the development of the H-2120. Starting around January 1935, the Navy and Wright began to share information on the engine’s development with the AAC. In August 1935, progress on the engine had again slowed, and the AAC asked the Navy if it could assist with H-2120 testing and development. The Navy had planned to use the first engine for bench testing and the second engine for at least 25 hours of flight tests. By early September, the first engine was in the middle of a 50-hour Navy type test, with other tests yet to be conducted. The Navy had lost interest in the liquid-cooled engine and was planning to convert the second engine to air-cooling after the 25 hours of flight trials. The conversion was expected to involve just new cylinders and valve gear. If all went well, two additional air-cooled engines would be ordered that incorporated whatever changes were deemed desirable from the previous tests. The second engine was Manufacture’s No. 11692 / BuNo 0121, and it was undergoing its initial test runs after assembly at Wright.

In response to the AAC’s request, the Navy proposed that it continue tests with the first engine, and the second engine would be delivered to the AAC for flight tests. If the AAC wanted to test the engine beyond the 25 hours, they were free to do so. If the engine showed promise, the Navy would order a small number of air-cooled versions. The AAC agreed to these terms, provided they could do some preliminary engine tests before the H-2120 was installed in an aircraft.


Rear view of the engine shows the downdraft carburetor, two magnetos, generator, and starter. Water pumps were located at the bottom of the engine.

By the end of September 1935, testing had included 200 hours of single cylinder tests, and the first H-2120 had completed 56 hours at 1,000 hp (746 kW), 44 hours at 900 hp (671 kW), and 140 hours of calibration and miscellaneous tests. A 50-hour Wright endurance test and a 50-hour Navy type test had been completed. During the Navy test, which was completed on 15 September 1935, four leaks had developed in the water jackets, one camshaft broke, and one valve guide had cracked. The Navy wanted to complete a 150-hour test. The two 50-hour tests counted for 100 hours, and the 140 hours of calibration counted for 25 hours. Wright offered to complete at their own expense the final 25 hours of the 150-hour test. This included 15 hours alternating between 1,100 hp (820 kW) takeoff power and idle, and 10 hours at 1,000 hp (746 kW) and 110% maximum engine speed (2,640 rpm).

On 7 November 1935, the AAC received the second H-2120 engine. The AAC had selected a Bellanca C-27A single-engine transport to serve as the H-2120 test bed. The engine’s installation would add 860 lb (390 kg) to the aircraft. After further evaluation, it was determined that the center of gravity would be out of limits, and the C-27A was deemed unsuitable for the engine tests. A Fokker C-14A was substituted, and serial number 34-100 was assigned for the conversion on 15 November.

Testing of the first engine at Wright had run into issues. After 4.5 hours at 2,640 rpm, an intake valve failed, resulting in a severe backfire. During inspection, the blower housing was found to be cracked, the crankcase had been punctured, and several connecting rods were damaged. Some of the damaged connecting rods were a result of improper assembly. The engine was repaired but damaged again on 20 November, when anther intake valve failed after 3.25 hours at 2,640 rpm. Before the failure, the H-2120 was producing 1,168 hp (871 kW) with a coolant and oil outlet temperature of around 255 ℉ (124 ℃). The engine was repaired again and completed its 10 hours at 2,640 rpm on 23 December 1935. The first H-2120 was retained by Wright for further tests.

By the end of December 1935, the AAC had run in the second engine for five hours and up to 2,300 rpm. The fuel pump diaphragm failed four times, necessitating replacement of the pump. After some vibration issues were overcome, calibration tests were started in mid-January 1936. The AAC concluded its tests in April, stating that the second H-2120 ran smoothly. The engine produced 1,000 hp (746 kW) at 2,400 rpm with 1.8 psi (.12 bar) of boost. It also developed 1,139 hp (849 kW) at 2,550 rpm with 3.2 psi (.22 bar) of boost. Installation of the H-2120 in the C-14A was forecasted to add 800 lb (363 kg), and the AAC felt that more information could be gained by continued ground testing rather than flight tests in the C-14A.


The first H-2120, Manufacture’s No. 11691 / BuNo 0120 appears to be complete. It is not known if it was repaired after its rear connecting rod failure. (NASM image)

Meanwhile, testing of the first H-2120 had continued at Wright. On 20 February 1936, the blade connecting rod on the rear crankpin failed during calibration for a 20-hour test at takeoff power (1,100 hp / 820 kW). The failure was the result of fatigue, and the broken rod caused significant damage to all nearby components.

In May 1936, Wright informed the AAC and Navy of a secret air-cooled engine that is had been developing at its own expense. This engine was expected to have an initial sea level rating of 1,200 hp (894 kW) and a takeoff rating of 1,400 hp (1,044 kW). Wright offered the services an experimental version of the engine for $38,750, with delivery expected in early 1937. Wright did not want any details of this engine leaked to its competitors and asked that the AAC and Navy refer to it as the “Aircooled 2120,” even though that was not the engine’s displacement. Wright felt that this new engine, which was the 14-cylinder R-2600 radial, possessed more potential than the H-2120. Wright wanted to drop further H-2120 development to focus on the R-2600. Both the AAC and the Navy agreed, encouraged Wright to continue R-2600 development, and stated their intention of purchasing experimental examples once money for the 1937 budget was available. The Navy had already lost interest in the H-2120, and the AAC stopped further testing in July.

During the fall of 1935, the Boeing Airplane Company, the Curtiss Aeroplane & Motor Company, and the Glenn L. Martin Company all requested data on the H-2120 so that they could potentially incorporate the engine into designs they were working on. Since the H-2120 was a joint project at the time, the service that received the request would check with the other service to see if there were any objections to sharing information. The only company denied data was North American Aviation, which requested information in January 1936. Both the AAC and Navy said they had no projects with the company that required an engine like the H-2120. Despite the interest, no applications for the H-2120 have been found.

Both H-2120 engines survive and are held in storage by the Smithsonian National Air and Space Museum. The first engine, Manufacture’s No. 11691 / BuNo 0120, is complete. It is not known if it was fully repaired after the failure of the rear connecting rod, or just reassembled. The second H-2120, Manufacture’s No. 11692 / BuNo 0121, was sectioned to expose its inner workings. The H-2120 represented the last of the hexagonal engines from the United States. Other hexagonal engines include the Curtiss H-1640, the SNCM 137, the Junkers Jumo 222, and the Dobrynin series of aircraft engines.


The second H-2120, Manufacture’s No. 11692 / BuNo 0121, neatly sectioned and displaying its internals. Note the four valves per cylinder and odd connecting rods. (NASM image)

– Numerous documents held by the U.S. National Archives and Records Administration at College Park, Maryland under Record Group 342 – Air Force Engineering Division RD 1676 and 3285 (scanned by Kim McCutcheon of the Aircraft Engine Historical Society)
Development of Aircraft Engines and Aviation Fuels by Robert Schlaifer and S. D. Heron (1950)


Rail Zeppelin Propeller-Driven Railcar (Schienenzeppelin)

By William Pearce

During World War I, German engineer Otto Steinitz had the idea of testing aircraft engines and propellers on railcars. Carl Geissen designed the engine mount, and testing was carried out on a special track at the German Aviation Research Institute (Deutschen Versuchsanstalt für Luftfahrt, DVL) in Berlin. The test car reached speeds of up to 97 mph (140 km/h). After the war, the propeller-driven railcar concept led Steinitz to design a special two-axle car with a mount for an aircraft engine at each end. An enclosed area between the engines housed the crew, passengers, and equipment. Known as the Dringos-Wagen, the machine made a 25-mile (40-km) test run from Grunewald to Beelitz on 11 May 1919. Loaded with approximately 40 people (possibly 35 passengers and five crew), the Dringos-Wagen experienced slow acceleration and a limited top speed of about 37 mph (60 km/h). Interest in Steinitz’s Dringos-Wagen declined after the test, but Geissen continued to design propeller-driven railcars for passenger service into the early 1920s.


The Dringos-Wagen testing the concept of a propeller-driven railcar in 1919. Note the radiators installed on the deck

Also in the early 1920s, fellow German engineers Kurt Wiesinger and Franz Friedrich Kruckenberg had similar ideas of using propellers to improve and quicken rail traffic. Wiesinger envisioned propelling railcars along the tracks with propellers, while Kruckenberg was considering a streamlined, propeller-driven gondola suspended from a single overhead track as a Zeppelin-on-rails. Kruckenberg’s design was similar to George Bennie’s Railplane of the same period. The pair met in 1923 but soon had a falling out and went their separate ways.

Kruckenberg had studied shipbuilding at the Technical University in Danzig (now Gdańsk University of Technology). One of his professors, Johann Schütte, had partnered with industrialist Karl Lanz to form Luftschiffbau Schütte-Lanz (Airship Construction Schütte-Lanz) in April 1909. After his graduation in August 1909, Kruckenberg joined the firm as a developmental engineer. Kruckenberg was involved with both airship and aircraft constructions while working at Schütte-Lanz, and he was the firm’s chief designer and director of aircraft production during World War I.

After World War I, Kruckenberg left Schütte-Lanz and began to focus on ways to improve rail travel, which is when he met Wiesinger. In July 1924, Kruckenberg partnered with Curt Stedefeld, an associate from university who had also worked for Schütte-Lanz and had founded the Company for Traffic Engineering (Gesellschaft für Verkehrstechnik, GVT) to promote the overhead rail system. Despite a forecasted top speed of 224 mph (360 km/h), the German Ministry of Transportation (Reichsverkehrsministerium) and the German State Railroad Company (Deutschen Reichsbahn-Gesellschaft, DRG) were not willing to offer any financial support. The main objection was the cost of the overhead rail system, which required the support and construction of a completely new infrastructure.


The DVL’s Propellerwagen was strictly a test machine and not intended to transport passengers. However, the Propellerwagen provided important information on suspension and handling that was applied to the Rail Zeppelin.

In April 1928, Kruckenberg and Stedefeld founded the Trajectory Company (Flugbahn-Gesellschaft, FG) in Heidelberg. The purpose of the new company was to build a propeller-driven railcar for experimentation on existing rail lines to validate the concepts of the overhead rail system. Once FG had demonstrated reliable performance on existing rails, it was hoped that the DRG would be willing to support the overhead rail system.

Around the same time, the DVL was interested in constructing a Propellerwagen to revive the testing of engines and propellers on railcars. Both FG and DVL had petitioned the DRG for the use of a straight, 5-mile (8-km) long, unused track between Langenhagen and Celle. The DRG proposed that the FG and the DVL work together to build a test rig that could be used to test engines and propellers and validate the concepts of propeller-driven railcars.

The DVL Propellerwagen test railcar was completely enclosed with an engine and propeller at each end. The narrow machine was tall with flat sides and had two axles. The rear engine drove its propeller directly via a long shaft, while the front engine drove an elevated propeller shaft via a wide belt. Both engines were six-cylinder, inline BMW IVs that produced 250 hp (186 kW) at 1,400 rpm. The test car weighed around 30,865 lb (14,000 kg) and had a top speed of 109 mph (175 km/h). After operating under its own power for the first time in April 1929, the test railcar eventually made 82 runs that totaled approximately 620 miles (1,000 km). While the DVL test machine did not help advance GVT/BG’s study of aerodynamics, it did provide important information about suspension, handling, and the operation of a propeller-driven railcar.


The bodyless Rail Zeppelin on 30 August 1930 illustrating the machine’s intricate frame. Note the numerous lightening holes in the truss frame. The engine-driven centrifugal fan drew in air via the circular opening (one on each side). The air was then forced through the large, square radiator in the lower rear of the railcar.

With information from the RVL tests in hand, Kruckenberg and his team compared diesel-electric drives against propeller drives for their railcar. They found that the diesel-electric would cost about 19 times more than the propeller drive and would weigh around 19,842 lb (9,000 kg), compared to 772 lb (350 kg) for the propeller and engine. In June 1929, the design of a streamlined, propeller-driven Trajectory Express Car (Flugbahn-Schnellwagen) was laid out and designated Propeller Railcar A (Propellertriebwagen A). This machine was undoubtedly inspired to some degree by the earlier designs of Geissen and Wiesinger. Detailed design work was done in October 1929, and wind tunnel models were tested the following month. Due to its design, construction, and appearance, the streamlined, high-speed railcar became commonly known as the Rail Zeppelin (Schienenzeppelin).

The Rail Zeppelin consisted of a steel chassis with an aluminum truss frame. The engine supports and some other components were also made of steel. The aluminum frame was perforated with extensive lightening holes. The machine was supported on two axles and had a wheelbase of 64 ft 4 in (19.60 m). The axles used rubber ball dampeners for their suspension. Each of its four wheels were 39 in (1.0 m) in diameter. The inner flange of the wheels was made taller than normal to help prevent any possible derailments caused by the machine’s anticipated high speeds. Air-powered friction brakes were used to slow the Rail Zeppelin. An electric drive motor powered the front axle for moving the machine in a limited manner up to 12.4 miles (20 km) and at relatively slow speeds.


The completed Rail Zeppelin displaying its streamlined form for press photographers. Note the two exhaust stacks at the rear of the machine and its long wheelbase.

Above the rear axle was a single BMW VI liquid-cooled V-12 engine. The BMW VI had a 6.30 in (160 mm) bore and a 7.48 in (190 mm) stroke. The engine displaced 2,797 cu in (45.84 L) and produced 500 hp (373 kW) at 1,410 rpm and 600 hp (447 kW) at 1,540 rpm. The engine’s exhaust was expelled through two vertical stacks. The drive end of the engine pointed toward the rear of the Rail Zeppelin and was elevated seven degrees. A shaft, which was also angled at seven degrees, extended approximately 7 ft 7 in (2.3 m) back to the rear of the machine and turned a four-blade, fixed-pitch Heine propeller made from ash wood. The seven-degree angle on the propeller applied downward force on the Rail Zeppelin and directed the propwash up and away from people on rail platforms. The propeller was 9 ft 2 in (2.80 m) in diameter and was comprised of two stacked two-blade units.

Also attached to the drive end of the engine was a centrifugal fan that circulated cooling air through the engine compartment. Air was drawn in via vents on each side of the Rail Zeppelin and entered a duct at the center of the machine. The air then passed through radiators and was expelled out from the bottom of the Rail Zeppelin. The engine also powered the compressor for the air brakes and two generators for the electrical system. Storage batteries were located in the train’s nose.

The Rail Zeppelin was covered by a streamlined, aerodynamic body. The front, lower sides, and rear of the machine were covered by aluminum sheeting. Windows extended along the sides of the passenger compartment. Due to the expected speed of the Rail Zeppelin, none of the windows opened, and ventilation was provided by forced air. The top of the railcar was covered with fire-proof canvas.


Rear view of the Rail Zeppelin with its four-blade propeller. The grate on the side was the cooling air intake. The circular housing under the propeller was for lights.

Two drivers sat side-by-side at the front of the train in a raised cockpit, which also had seats for two observers. Passenger compartment access doors were positioned at the front, middle, and rear on each side of the Rail Zeppelin. The 8 ft 2 in (2.5 m) wide and 52 ft 6 in (16 m) long passenger cabin was insulated and had wood paneling. As designed, the passenger compartment consisted of six sections, with each section accommodating four passengers, and a central aisle extended through each section. In addition to the 24-seat configuration, an alternative configuration with bench seating could accommodate 44 passengers. A lavatory was provided at the rear of the cabin. As built, only the forward three compartments were completed, and the rear three compartments held test equipment. The Rail Zeppelin was 84 ft 10 in (25.85 m) long, 8 ft 9 in (2.66 m) wide, and 9 ft 2 in (2.80 m) tall. The railcar weighed 40,962 lb (18,580 kg).

Construction of the Rail Zeppelin started in early 1930 at the DRG repair works in Leinhausen, near Hannover. Without its body, the railcar was mostly complete in August 1930 and moved under its own power with the electric motor. The body was added, and the Rail Zeppelin was completed in September. The first test with propeller power occurred on 25 September 1930. During the first high-speed test, the Rail Zeppelin reached 62 mph (100 km/h) after 66 seconds and 3,232 ft (985 m) of forward travel. The machine hit 93 mph (150 km/h) after two minutes, and the throttle was pulled back just past three minutes at 113 mph (182 km/h).


The Rail Zeppelin with its two-blade propeller sits at Spandau (Berlin) station after its run on 21 June 1931. The two-blade propeller improved the machine’s top speed but slowed acceleration.

The initial testing was done in secret and revealed that braking was an issue. Due to the Rail Zeppelin’s streamlining and relatively light weight, light breaking took a long distance, and heavy breaking had a tendency to lock the rear axle. In one instance, the brakes locked the rear axle at 112 mph (180 km/h), and it took 1.2 miles (2 km) for the railcar to come to a stop. A flat spot on the rear wheels about .14 in (3.5 mm) deep was discovered during a quick inspection, but the Rail Zeppelin was still operated up to 87 mph (140 km/h) on its return trip.

On 18 October 1930, the Rail Zeppelin was debuted to the press. Tests continued, some of which involved DRG officials. To test the concept of using a propeller with adjustable blades, a propeller with reverse pitch was installed (this may have been the normal propeller installed backward), and the Rail Zeppelin was run in reverse at 37 mph (60 km/h). With the propeller back to its normal forward thrust configuration, propeller braking tests were conducted. The electric motor was used to reverse the train at 28 mph (45 km/h). Then the propeller was engaged, and it alone halted the Rail Zeppelin in 20 seconds. These tests indicated that a fully reversible pitch propeller would greatly enhance the Rail Zeppelin’s braking and improve its safety.


This upper view of the Rail Zeppelin in Berlin illustrates the machine’s canvas covering over its upper body. Note the windshield wipers and the two-blade propeller.

Testing on the isolated track continued until May 1931, when the Rail Zeppelin was operated on the main line. However, no German insurance company would cover the propeller-driven train, and arrangements had to be made with Lloyd’s of London for coverage. The main line test was a 12.2-mile (19.7-km) stretch between Plockhorst and Lehrte. The Rail Zeppelin drew quite a crowd wherever it operated, necessitating a police presence to control the spectators. On 10 May, the machine covered the distance in 10 minutes and reached a top speed of 127 mph (205 km/h).

Testing over a longer distance was needed, so the 160-mile (257-km) route between Hamburg and Berlin was selected. The four-blade propeller was switched in favor of a two-blade unit that would provide a higher top speed at the cost of acceleration. The two-blade propeller was of the same construction as the previous propeller—fixed pitch, wood, and 9 ft 2 in (2.80 m) in diameter.

On 21 June 1931, the Rail Zeppelin left the Hamburg-Bergedorf station at 3:27 AM with a number of observers and crew on board. As the train traveled, its speed continued to increase. However, the track speed limit around many of the curves was 62 mph (100 km/h), which caused the Rail Zeppelin to slow often and accelerate on the straight stretches. Over the 7.5 miles (12-km) separating Karstädt and Dergenthin, the Rail Zeppelin averaged 143.0 mph (230.2 km/h)—a new speed record for passenger rail travel that would stand until 1954. The train arrived in Berlin at 5:05 AM with an average speed of 97.7 mph (157.3 km/h). Along the way, the Rail Zeppelin burned only 48.6 US gal (40.5 Imp gal / 184 L) of fuel, which averaged to 3.3 miles per US gal (1.4 km/L).


With its propeller spinning, the Rail Zeppelin awaits departure at a station. Although the propeller did not really extend beyond the railcar’s body, this view illustrates the rather disconcerting proposition of passengers coming into close proximity of the large propeller. Note the open middle access door.

After its record run, the Rail Zeppelin was put on display at the Rennbahn-Stadion (now Olympiastadion) railway station in Berlin until 25 June 1930. After the display, the train embarked on a short tour of Germany. The four-blade propeller was reinstalled for the tour, and the speed was kept down to conform with normal scheduled traffic on the line. Once again, the Rail Zeppelin drew large crowds wherever it went. The machine returned to Hannover on 28 June.

A new electromagnetic braking system was installed on the Rail Zeppelin and was tested in March 1932. The system was able to stop the train from 103 mph (165 km/h) in 2,067 ft (630 m). While this was a definite improvement, the distance was still longer than desired. Although the Rail Zeppelin had achieved some level of success, the practicality of such a machine was in question. The train’s long wheelbase caused issues on tight curves, and its ineffective brakes necessitated long stopping distances. The propeller-driven design did not allow coupling multiple units together, and the machine was unable to easily maneuver forward and back for short distances. The large propeller always presented a level of danger to anyone in close proximity to the Rail Zeppelin, and that included passengers waiting on rail platforms.


Image of the modified Rail Zeppelin with propeller removed and the engine installed in the nose. The nose and cockpit were revised for the installation of the engine and the hydraulic drive. Barely visible is the dual-axle front bogie.

Kruckenberg and his team took another look at the future of rail travel, and the propeller-driven railcar concept was discarded in favor of a diesel-hydraulic drive that was much lighter than diesel-electric. In May 1932, modifications were started on the Rail Zeppelin to convert the machine to the new power system. The BMW engine and propeller were removed from the rear, and the engine was temporarily installed in the nose of the train until the intended Maybach GO 5 was available. The GO 5 was a 2,588 cu in (42.4 L) diesel V-12 that produced 410 hp (305 kW) at 1,400 rpm. The engine’s exhaust was collected in a central duct that split the center of the cockpit’s windscreen. Via a Föttinger fluid coupling, the engine drove a double-axle bogie positioned under the cockpit. The bogie had a wheelbase of 6 ft 7 in (2.0 m). To accommodate the changes, the train’s nose was elongated, and its cockpit was raised. Its length was increased to 95 ft 2 in (29.0 m) and its weight increased to 62,832 lb (28,500 kg).

The revised Rail Zeppelin was completed in November 1932. The train was tested in early 1933 and reached 87 mph (140 km/h) in under two minutes after traveling 1.5 miles (2,426 m). It was also run at least to 99 mph (160 km/h). However, the DRG had become interested in other trains, namely those powered by diesel-electric engines. The Rail Zeppelin continued to be tested through 1934 and accumulated over 1,491 miles (2,400 km) with its new drive system. The GO 5 engine was finally installed in 1934, and the machine was sold to the DRG. It does not appear that much testing was done with the GO 5 engine. While Kruckenberg and his team continued to design more conventional locomotives throughout the 1930s, the Rail Zeppelin was placed into storage. In 1939, the Rail Zeppelin was scrapped so that its metal could be used to rebuild the German armed forces.

The Rail Zeppelin and its diesel-hydraulic drive served as the basis for the Kruckenberg-designed SVT 137 155, which could accommodate 100 passengers. A single example of the SVT 137 155 was completed in 1938, and the three-section express train set a conventional passenger train speed record on 23 June 1939 at 134 mph (215 km/h). The SVT 137 155 never entered regular service, and it was scrapped in 1967.


The SVT 137 155 built upon the Rail Zeppelin’s diesel-hydraulic experiments. Note the exhaust stack splitting the windscreen.

Der Schienenzeppelin by Alfred Gottwaldt (2006)
BMW Aero Engines by Fred Jakobs, Robert Kroschel, and Christian Pierer (2009)


Eldridge FIAT Mephistopheles LSR Car

By William Pearce

In 1907, FIAT won the French Grand Prix and had a good racing season overall. The manufacturer’s success inspired Scotsman George Abercromby to order his own FIAT race car with the hope of winning the 1908 Montagu Cup Race held at the Brooklands raceway in Surrey, England. Abercromby’s car was designated SB4 Corsa (Race) by FIAT, and was an improvement of the 1907 Grand Prix racer.


Felice Nazzaro sits behind the wheel of the original FIAT SB4 built for George Abercromby in 1908. A leather panel could be added to enclose the side of the very open racer.

The FIAT SB4 consisted of two straight frame rails that supported the engine at the front of the car, followed by two very open seats just before the rear wheels and a fuel tank at the extreme rear. The four-cylinder engine had two cast cylinder blocks, each with two cylinders. Reportedly, each cylinder had one intake valve and two exhaust valves. The intake valve and one exhaust valve of each cylinder were actuated by pushrods from the right side of the engine, while the remaining exhaust valve was actuated from the left side of the engine. The cylinders had a 7.48 in (190 mm) bore and a 6.30 in (160 mm) stroke. The SB4 engine displaced 1,107 cu in (18.15 L) and produced around 175 hp (130 kW) at 1,200 rpm.

The engine was concealed in the SB4 racer under a cowling and had an underpan. Mounted behind the engine was a four-speed transmission that powered a differential shaft just forward of the rear wheels. Sprockets and chains delivered power to the rear wheels. All of the wheels were made of wood. A foot pedal engaged a brake on the gearbox, and a hand lever operated a brake on the differential shaft. There were no front brakes.


Ernest Eldridge sits in the highly-modified FIAT SB4, now lengthened and powered by a 300 hp (223 kW) A.12bis engine. The car is pictured at Brooklands in 1924.

Abercromby’s SB4 was delivered to England in the spring of 1908, and FIAT driver Felice Nazzaro raced the car at Brooklands in June. Nazzaro defeated Frank Newton driving the Napier Samson and averaged 94.75 mph (152.49 km/h) over the 27.25-mile (43.85-km) race with one lap recorded at 121.64 mph (195.76 km/h). However, Abercromby was not pleased with the car (or perhaps FIAT) and refused its delivery. Therefore, the FIAT was not entered in the 1908 Montagu Cup Race held in August. A legal skirmish ensued between Abercromby and FIAT and was won by FIAT, with Abercromby ultimately taking delivery of the vehicle.

Abercromby raced the FIAT a bit in 1910, but mechanical issues prevented success. The car passed through a few owners before World War I but was run very little. After World War I, John Duff discovered the FIAT stored in a garage and was able to purchase the car. Duff somewhat restored the racer, replaced the wood wheels with wire ones, and had a new body made that enclosed more of the car and improved its aerodynamics. Duff and co-driver R F Cooper entered the car for various Brooklands meets in 1921, but mechanical issues prevented it from starting most of these races. The Fiat did place second in a Lightning Short held in August, but cracked pistons took it out of subsequent races.


Eldridge and Jim Ames in Mephistopheles at Arpajon, France for an LSR attempt. Note the chain drive.

In 1922, Duff had replaced the pistons with lighter ones designed by Harry Ricardo. With co-driver L G Callingham, Duff finished third in a sprint race held in May, turning a lap at 107.10 mph (172.36 km/h). However, the FIAT’s engine blew up spectacularly during a longer race, with parts flying in all directions. Duff decided that the FIAT was not worth his time, and he sold the damaged, 14-year-old car to Ernest Arthur Douglas Eldridge.

Eldridge had started racing at Brooklands in 1921 behind the wheel of a 1907 Isotta Fraschini Grand Prix car powered by a 488 cu in (8.0 L) four-cylinder engine that produced around 100 hp (75 kW). Disappointed by his lackluster performance, Eldridge decided to modify the car with a six-cylinder, inline Maybach AZ engine that displaced 1,251 cu in (20.5 L) and produced 180 hp (134 kW) at 1,200 rpm. The Isotta Fraschini car required extensive modifications to support the large Maybach engine, which originally powered an airship. The modified car was known as the Isotta-Maybach, and Eldridge debuted it in April 1922. Eldridge found success with the Isotta-Maybach and was able to lap Brooklands in excess of 100 mph (161 km/h).


Mephistopheles about to make a record run at Arpajon. Eldridge always did an excellent job handling the car’s power, and only the tires suffered.

In search of more power, Eldridge was able to acquire a war-surplus FIAT A.12bis engine, a type that powered various Italian aircraft during World War I. The six-cylinder, inline A.12bis had two intake and two exhaust valves for each cylinder, all actuated by a single overhead camshaft. Two spark plugs were fitted on each side of each cylinder. The engine had a 6.30 in (160 mm) bore and a 7.09 in (180 mm) stroke. The A.12bis displaced 1,325 cu in (21.7 L) and normally produced around 260 hp (194 kW) at 1,700 rpm. Eldridge had made some modifications to the engine, including improving its ignition system, and his example produced 300 hp (233 kW) at 1,400 rpm and 320 hp (239 kW) at 1,800 rpm. Rather than modifying the Isotta-Maybach, Eldridge sought a new chassis for the engine and purchased the FIAT racer from Duff as the basis for his new project. The Isotta-Maybach was sold to Loftus Claude Gerald Moller Le Champion, and Eldridge focused on his FIAT racer.

In order to fit the A.12bis engine, Eldridge added about 17 in (432 mm) to the FIAT racer’s chassis. Some sources state that this section was originally from a bus frame, but it is more likely that the metal was supplied by the London General Omnibus Company and that it was not from a scrapped bus. A new, more enclosed body was made to cover the longer car, but the transmission and chain drive were retained. The car used a 176 lb (80 kg) flywheel, and the clutch had 57 plates. The underpan was extended the entire length of the car. Eldridge’s 300 hp FIAT was 16 ft 8 in (5.09 m) long, 6 ft 1 in (1.85 m) wide, 4 ft 7 in (1.40 m) tall, and weighed approximately 3,858 lb (1,750 kg). Mounted on the car’s 21 in (533 mm) wire wheels were 33 x 6 in (838 x 152 mm) tires.


Mephistopheles streaks along the public road in Arpajon as it makes a record attempt. The road had a 4.5-mile (7.2-km) straight.

Eldridge debuted his 300 hp FIAT at Brooklands for the Summer Meeting held on 23 June 1923. The car was run without the body, as it had not yet been completed. Various issues were encountered, but Eldridge was able to complete a lap from a standing start at 88.77 mph (142.86 km/h), which was a good speed but not fantastic. After repairs, Eldridge pushed his standing start speed up to 91.17 mph (146.72 km/h), but trouble persisted, and the car was withdrawn.

In late October 1923, the 300 hp FIAT was back at Brooklands where Eldridge set a world half-mile (.8 km) standing start record, averaging 77.68 mph (125.01 km/h) over two runs. In April 1924, Eldridge completed a Brooklands lap at 122.37 mph (196.94 km/h) and finished second in the Founder’s Gold Cup Race, coming in behind Le Champion driving Eldridge’s old Isotta-Maybach, which had a 20 second head start. The powerful car had an extreme tendency to quickly destroy tires. In early June, Eldridge was back at Brooklands and lapped the track at 107.10 mph (172.36 km/h) from a standing start and 123.89 mph (199.38 km/h) the next time around. Eldridge had become as comfortable as possible in the 300 hp monster FIAT.


Eldridge with the new radiator cowling installed on Mephistopheles. Note the engine’s 12 open exhaust stacks. The car was run in this configuration at Montlhéry in 1925.

The Automobile Club de France was sponsoring speed trials in Arpajon, France in early July 1924, and Eldridge decided to take the 350HP FIAT and attempt a Land Speed Record. At the time, the LSR stood at 133.75 mph (215.25 km/h) over the flying km (.6 mi) and 129.17 mph (207.88 km/h) over the flying mile (1.6 km) and was set by Kenelm Lee Guinness driving the Sunbeam 350HP at Brooklands on 17 May 1922. The course for the trials was a 4.5-mile (7.2-km) straight section of a tree-lined public road that linked Arpajon to Paris.

The aero-engined FIAT, now with white ‘FIAT’ lettering, caused quite a commotion in France, and the car was nicknamed Mephistopheles (Mefistofele in Italian) by the press. Mephistopheles is a folklore demon that collects the souls of the damned. The name stuck, and the car became known as the FIAT Mephistopheles / Mefistofele.


Eldridge and Ames in Mephistopheles leads John Godfrey Parry-Thomas in his Leyland-Thomas racer at Brooklands on 11 July 1925. Thomas would come back to win the three-lap match race, which involved both cars operating beyond their limits. Thomas set a Brooklands lap record during the race. (Brooklands Museum image)

On 6 July 1924, Eldridge and his co-driver Jim Ames took Mephistopheles out for a record run. The co-driver had the tasks of actuating a pump to maintain fuel pressure and of opening an oxygen bottle, which Eldridge had devised to feed the gas into the engine in an attempt to make more power. The pair ran at the record-breaking speed of 146.8 mph (236.3 km/h) over the km (.6 mi). However, Frenchman René Thomas protested the run, as Mephistopheles had no reverse gear, which new rules stipulated was required. Earlier in the day, Thomas had established a new record in his V-12-powered Delage DH at 143.312 mph (230.638 km/h) for the km (.6 mi) and 143.26 mph (230.55 km/h) for the mile (1.6 km). Thomas’ protest was upheld, and he retained the LSR while Eldridge was disqualified.

Not to be outdone, Eldridge modified Mephistopheles to conform to the rules. Exactly how this was done is up for debate. Some sources state that he flipped the drive chain to make a figure eight and spin the drive axle in reverse. Others contend that while this would make the car back up, it would not be able to move forward without having the chain put right again, and such a modification was unlikely to conform to the rules. More likely, a simple reverse gear was made incorporating an auxiliary shaft from the transmission.


Thomas (left) and Eldridge (right) shake hands after the match race. Both men were the epitome of the sportsman. The cowling of Mephistopheles is in the foreground.

Whatever the ‘fix,’ the modifications to Mephistopheles satisfied the officials, and another record attempt was planned for 12 July 1924. At this point, the time trials were over, and the public road was open to normal traffic. In the early morning, with police standing-by to hold traffic, Eldridge and co-driver D. W. R. Gedge ran the 16-year-old Mephistopheles on the road and established a new LSR at 146.014 mph (234.986 km/h) over the km (.6 mi) and 143.260 mph (234.794 km/h) over the mile (1.6 km). True to its nature, Mephistopheles destroyed its tires along the way. This was the last LSR set on a public road. They also set a standing start 1 km (.6 mi) record at 85.477 mph (137.562 km/h). Eldridge held the LSR until 25 September 1924, when Malcolm Campbell set his first LSR at 146.16 mph (235.22 km/h) over the km (.6 mi) in Guinness’ old Sunbeam 350HP, which became the first Blue Bird.

After the record run, Eldridge had Mephistopheles modified slightly with a new, more-streamlined radiator cowling. In October 1924, the car competed against John Godfrey Parry-Thomas in the Leyland-Thomas racer at the opening of the Autodrome de Linas-Montlhéry track south of Paris, France. Mephistopheles won the six-lap race at 121.04 mph, but both cars suffered tire failure along the way. On 27 November 1924, Eldridge attempted to better his LSR but was only able to establish a new 10-mile (16.1-km) record at 121.443 mph (195.444 km/h). In December, a new 5 km (3.1 mi) record was set at 128.53 mph (206.85 km/h). Back at the Montlhéry track on 29 March 1925, Eldridge and Mephistopheles set new records covering 5 km (3.1 mi) at 129.23 mph, 5 mi (8.0 km) at 128.20 mph, and 10 km (6.2 mi) at 128.34 mph (206.5 km/h).


FIAT Mephistopheles as seen at the Goodwoood Festival of Speed in 2011. The car is owned by Fiat and normally kept at the Centro Storico Fiat (Fiat Historic Center) in Turin, Italy. (Fiat image)

Since the debut of the 300 hp FIAT, there had been much interest in a match race against Thomas in the Leyland-Thomas racer. That head-to-head race was finally held at Brooklands on 11 July 1925, and no one in attendance was disappointed. Mephistopheles’ new radiator cowling had been discarded by this point. The Leyland-Thomas used a highly-turned, straight-eight engine that had a 3.5 in (89 mm) bore and a 5.75 in (146 mm) stroke. The engine displaced 443 cu in (7.26 L) and produced an impressive 240 hp at 3,500 rpm. Thomas got off the line first but was soon passed by Eldridge. Both men pushed their machines to the limit, skidding around the track at times. Thomas was able to get back by Eldridge and take the win, although both cars lost one tire near the end of the three-lap race. Eldridge and the FIAT had a best lap of 125.45 mph (201.89 km/h) and finished at an average of 121.19 mph (195.04 km/h). During the race, Thomas set a Brooklands lap record at 129.70 mph (208.73 km/h) and finished at an average of 123.23 mph (198.21 km/h).

In late July 1925, Eldridge sold Mephistopheles to Le Champion. Le Champion campaigned the car off and on for some time, but Mephistopheles’ habit of devouring its tires did not serve it well during most races. The car was acquired by W.G.S. Wike and George Gregson in October 1931. After racing it for a short time, Wike and Gregson regularly drove the car on public roads. Gregson eventually took full ownership of Mephistopheles but was killed at the Battle of Dunkirk during World War II. In 1945, the car was acquired by Charles Naylor, who later sold it to Fiat around 1960. Mephistopheles was restored and participated in a vintage race in 1961 and in other races over the years. It has most recently appeared at the Goodwood Festival of Speed in 2001 and 2011. Mephistopheles is preserved at the Centro Storico Fiat (Fiat Historic Center) in Turin, Italy. Although Eldridge did not make any further LSR attempts, he was involved with George Eyston’s Speed of the Wind and Thunderbolt cars.


FIAT Mephistopheles on display giving a glimpse at the car’s A.12 engine. While not the original engine installed by Eldridge, the power plant is more than enough to push Mephistopheles to speeds beyond that at which any sane person would travel. (Fiat image)

This article is part of an ongoing series detailing Absolute Land Speed Record Cars.

Brooklands Giants by Bill Boddy (2006)
The Land Speed Record 1920-1929 by R. M. Clarke (2000)
Reid Railton: Man of Speed by Karl Ludvigsen (2018)


Lockheed Model 1249 Turboprop Super Constellation

By William Pearce

In 1938, the Lockheed Corporation in Burbank, California began design work on a large commercial airliner intended to outperform other transports then in service. Initially known as the Model 44 Excalibur, the aircraft’s design changed as feedback provided by Pan American Airways was evaluated. In 1939, Transcontinental and Western Air (TWA) approached Lockheed in search of an aircraft with performance superior to that of the planned Model 44. Lockheed decided to redesign its airliner based on TWA’s requirements, and the new design became the Model 049 Constellation (originally Model 49 and known as Excalibur A).


The Lockheed Model 1249 was a turboprop-powered Super Constellation originally ordered by the US Navy as the R7V-2. The aircraft was the fastest of the Constellation series by far, but other turboprop and jet aircraft were favored by all parties.

The Model 049 Constellation was an all-metal, low-wing aircraft with tricycle landing gear. The airliner was powered by four 2,200 hp (1,641 kW) Wright R-3350 engines and carried 60 passengers in its pressurized cabin. The Model 049 had a 123 ft (37.5 m) wingspan and was 95 ft 2 in (29.0 m) long and 23 ft 8 in (7.2 m) tall. The aircraft’s tail had three vertical stabilizers with rudders to keep the aircraft’s overall height down so that it would fit in TWA’s existing hangars. The Model 049 had a top speed of 329 mph (529 km/h) at sea level, a cruising speed of 275 mph (443 km/h) at 20,000 ft (6,096 m), an initial climb rate of 1,620 fpm (8.2 m/s), and a range of 2,290 miles (3,685 km) with a maximum payload of 18,400 lb (8,346 kg). The aircraft had an empty weight of 55,345 lb (25,104 kg) and a maximum weight of 86,250 lb (39,122 kg).

In 1940, the design of the Model 049 was mostly finalized, and three airlines had placed orders for a total of 84 aircraft (30 of these were long-range Model 349s). In May 1941, the United States Army Air Corps ordered 180 Model 349s to be used as transports. Lockheed tooled-up for aircraft production, and construction of the first Model 049 was underway when the United States entered World War II after the bombing of Pearl Harbor on 7 December 1941. With the United States at war, production priorities shifted, and all of the aircraft intended for the airlines would be completed as C-69s, the military designation for the Model 049/349.


Installation of the Pratt & Whitney T34 turboprop engines onto the Super Constellation airframe was well-executed. The tight-fitting cowling was much smaller than those needed to cover the larger-diameter R-3350 piston engine. The aircraft’s main gear was unchanged, which resulted in an awkward hump under the No. 2 and 3 engines. Note the wide cord of the three-blade propeller.

The C-69 received a low priority compared to Lockheed’s other commitments, and the prototype made its first flight on 9 January 1943. Only 15 C-69s were completed by the end of the war. After the war, Lockheed again focused on the Constellation for airline use, and new orders were received. In May 1945, Lockheed made use of new 2,500 hp (1,864 kW) R-3350 engines and designed the Model 649 and the Model 749, which had increased range. The United States Air Force also used the Model 749 as the C-121A. The Model 749 had a top speed of 358 mph (576 km/h) at 19,200 ft (5,852 m), a cruising speed of 304 mph (489 km/h) at 20,000 ft (6,096 m), an initial climb rate of 1,280 fpm (6.5 m/s), and a range of 1,760 miles (2,834 km) with a payload of 16,300 lb (7,394 kg). The aircraft had an empty weight of 58,970 lb (26,748 kg) and a maximum weight of 107,000 lb (48,534 kg).

In late 1949, Lockheed investigated ways to improve the Constellation’s performance and keep the aircraft on the frontline of airline service. The result was the Model 1049 Super Constellation, which had two new fuselage sections added that increased the aircraft’s length by 18 ft 5 in (5.6 m). In addition, 2,700 hp (2,013 kW) R-3350 engines were installed, and the height of the vertical stabilizers was increased by 1 ft 3 in (.38 m). The aircraft could accommodate up to 92 passengers. The Model 1049 was 113 ft 7 in (34.6 m) long, 24 ft 9 in (7.6 m) tall, had a top speed of 338 mph (544 km/h) at sea level, a cruising speed of 302 mph (485 km/h) at 20,000 ft (6,096 m), an initial climb rate of 1,100 fpm (5.6 m/s), and a range of 2,880 miles (4,635 km) with a payload of 18,800 lb (8,528 kg). The aircraft had an empty weight of 69,210 lb (31,393 kg) and a maximum weight of 120,000 lb (54,431 kg). The Model 1049 made its first flight on 13 October 1950. The Model 1049B was a military transport version of the Super Constellation, designated R7V-1 (originally R7O-1) for the US Navy and C-121C for the US Air Force.


The first R7V-2 (BuNo 131630) seen on a test flight without the wingtip fuel tanks. The Constellation-series of aircraft is known as one of the more graceful airframes, and the turboprop engines made the aircraft that much more impressive.

From the start of the Model 1049’s design, Lockheed had envisioned using 3,250 hp (2,424 kW) R-3350 Turbo Compound (TC) engines, which used three power recovery turbines to harness energy from the exhaust and feed it back to the crankshaft via fluid couplings. However, Wright’s development of the engine lagged behind that of the aircraft. The R-3350 TC engines were first incorporated into the Model 1049C, which made its first flight on 17 February 1953. The pinnacle of the Super Constellations was the Model 1049G, powered by 3,400 hp (2,535 kW) R-3350 TC engines. The aircraft made its first flight on 7 December 1954. The Model 1049G had a top speed of 370 mph (595 km/h) at 20,000 (6,096 m), a cruising speed of 310 mph (499 km/h) at 20,000 ft (6,096 m), an initial climb rate of 1,165 fpm (5.9 m/s), and a range of 4,165 miles (6,704 km) with a payload of 18,300 lb (8,301 kg). The aircraft had an empty weight of 73,016 lb (33,120 kg) and a maximum weight of 137,500 lb (62,369 kg).

The US Navy had been instrumental in supporting Wright’s development of the turbo compound engine, but in the early 1950s, the turboprop engine was making its way onto the aviation scene. In June 1950, Lockheed considered a turboprop-powered Super Constellation airliner as the Model 1149, but the design did not procced. In November 1951, Lockheed proposed to the Navy a turboprop R7V-1 (Model 1049B) powered by Pratt & Whitney T34 turboprop engines. The Navy was interested, and Lockheed proceeded with design work on the turboprop Super Constellation as the Model 1249. The Navy ultimately amended its R7V-1 order to include two airframes converted to turboprop-power. These aircraft were designated R7V-2 by the Navy and carried the Lockheed serial numbers 4131 and 4132 and the Navy BuNos 131630 and 131631.


Side view of the R7V-2 shows the reinforcements on the rear fuselage above and below the large cargo door, which hinged up. The turboprop aircraft used standard Super Constellation fuselages, and most were reused on piston-powered aircraft once their days of testing were over.

Two additional airframes were ordered in May 1953. They carried the Lockheed serial numbers 4161 and 4162 and Navy BuNos 131660 and 131661. In October 1953, BuNos 131660 and 131661 were slated to be completed as YC-121Fs for the Air Force and were also assigned Air Force serial numbers 53-8157 and 53-8158. The YC-121F was the Lockheed Model 1249A. Since the order originated with the Navy, all four turboprop Super Constellations carried the Navy designation R7V-2, with the last two also assigned the Air Force designation. All four aircraft were purely intended to test the serviceability of the turboprop engine.

The Model 1249 was based on the Model 1049B, with a modified wing and new engines. The R-3350-powered Constellations had the engine nacelle’s centerline mounted below the wing. The Model 1249 had the engine nacelle’s centerline mounted above the wing, and the nacelle extended back to the wing’s trailing edge. Exhaust from the turboprop engine was expelled from the back of the nacelle and generated thrust. The Model 1249 could also accommodate removable 600 US gallon (500 Imp gal / 2,271 L) wingtip tanks that were first installed on Navy Super Constellations and later used by airlines. Additional fuselage fuel tanks were fitted, and the landing gear was strengthened.


The first YC-121F, still with Navy BuNo 131660 painted on the tail, seen on a test flight over Pacific Palisades, just north of Santa Monica, California. Note the large, removable wingtip fuel tanks.

The T34 turboprop was an axial-flow engine that consisted of a 13-stage compressor powered by a three-stage turbine. Sources indicate that the R7V-2s for the Navy used T34-P-12 engines, while the YC-121Fs for the Air Force used T34-P-6 engines. The T34-P-12 produced 5,005 shp (3,732 kW) and 1,360 lbf (6.05 kN) of thrust, for a total of 5,550 eshp (4,139 kW) at 11,000 rpm for takeoff power. Continuous power for the T34-P-12 was 4,210 shp (3,139 kW) and 1,165 lbf (5.18 kN) of thrust, for a total of 4,675 eshp (3,486 kW) at 10,500 rpm.

The T34-P-6 produced 5,500 shp (4,101 kW) and 1,250 lbf (5.56 kN) of thrust, for a total of 6,000 eshp (4,474 kW) at 11,000 rpm for takeoff power. Continuous power for the T34-P-6 was 4,750 shp (3,542 kW) and 1,125 lbf (5.57 kN) of thrust, for a total of 5,200 eshp (3,878 kW) at 10,750 rpm. Each engine turned a three-blade Hamilton Standard A-3470 propeller at .0909 engine speed. The propeller was 15 ft in (4.57 m) diameter, and each blade was 24 in (610 mm) wide.

The Model 1249 had a 117 ft (35.7 m) wingspan without wingtip fuel tanks and a 119 ft (36.3 m) wingspan with wingtip fuel tanks. The aircraft was 116 ft 2 in (35.4 m) long and 25 ft 6 in tall (7.8 m). The Model 1249 had a top speed of 444 mph (715 km/h) at 15,000 ft (4,572 m) and could maintain 420 mph (676 km/h) at 25,000 ft (7,620 m). The aircraft had an initial climb rate of 4,600 fpm (23.4 m/s) at maximum power and 2,310 fpm (11.7 m/s) at normal power. The Model 1249’s ceiling was 32,900 ft (10,028 m) at maximum power and 26,400 ft (8,047 m) at normal power. The aircraft’s range was 2,230 miles (3,589 km) with a payload of 24,210 lb (10,981 kg), and it had an empty weight of 72,387 lb (32,834 kg) and a maximum weight of 148,540 lb (67,377 kg). The Model 1249 could accommodate 106 passengers and four crew members for short flights, 87 passengers and 15 crew members for long flights, or 35,500 lb (16,103 kg) of cargo. For medical evacuations, the aircraft could accommodate 73 litters, four attendants, and four crew members.


The second YC-121F, Air Force serial number 53-8158, seen with flaps and gear extended. Note the exhaust outlet at the rear of the engine nacelles.

The Model 1249 / R7V-2, BuNo 131630, made its first flight on 1 September 1954. The aircraft was not initially fitted with the wingtip tanks, and it was accepted by the Navy on 10 September 1954. The second R7V-2 soon followed and was accepted by the Navy on 30 November 1954. The Navy put the R7V-2 aircraft through various tests. A top speed of 479 mph (771 km/h) was achieved in a slight dive, and the aircraft took off overweight at 166,400 lb (75,478 kg). However, the R7V-2’s career was short. In December 1956, and with just 109 total hours, BuNo 131630 was put into storage at Naval Air Station (NAS) Litchfield Park in Arizona. The aircraft was struck off charge in April 1959 and provided spare parts for other Constellations.

In late 1956, BuNo 131631 was loaned back to Lockheed as an engine testbed for the L-188 Electra airliner and later the P-3 Orion maritime patrol aircraft. At the time, BuNo 131631 had accumulated 120 hours of operation. Rohr Aircraft in Chula Vista, California removed the T34 engines and replaced them with Allison 501-D (T56) engines in new nacelles intended for the Electra. The 501-D produced 3,460 shp (2,580 kW) and 726 lbf (3.23 kN) of thrust, for a total of 3,750 eshp (2,796 kW) for takeoff power. The engines turned four-blade Aeroproducts 606 propellers that were 13 ft 6 in (4.11 m) in diameter. The modified aircraft was nicknamed ‘Elation,’ a combination of Electra and Constellation. Elation made its first flight in July 1957 and was used until July 1959 when it was damaged at Palmdale, California. With 882 hours, BuNo 131631 was delivered to NAS Litchfield Park. In May 1960, the aircraft was sold to California Airmotive. The fuselage and some other parts were used to rebuild 1049G Super Constellation N7121C, and the remainder was scrapped. N7121C went through various air cargo owners until it was scrapped in March 1968.


Lockheed serial 4132, the second R7V-2 (BuNo 131631), fitted with Allison 501-D engines to test their installation for the L-1888 Electra. Known as the Elation, the aircraft flew more with the Allisons than it did with its original Pratt & Whitney engines. Note the four-blade propellers.

The Model 1249A / YC-121F, serial no 53-8157, made its first flight on 5 April 1955 and was accepted by the Air Force in July. The second aircraft, serial number 53-8158, took to the air in August 1955. Both YC-121Fs were assigned to the 1700th Test Squadron of the Military Air Transport Service, based at Kelly Air Force Base in San Antonio, Texas. In April 1956, a YC-121F set a point-to-point speed record, traveling the 1,445 miles (2,326 km) between Kelly, Texas and Andrews Air Force Base, Maryland in 2 hours 53 minutes, an average of 501.16 mph (806.54 km/h). Between 25 and 26 January 1957, another record was set flying from Long Beach, California to Andrews Air Force Base, Maryland. The 2,340-mile (3,766-km) route was covered in 4 hours 43 minutes at an average speed of 496.11 mph (798.41 km/h). Both record flights were most likely made by 53-8157.

In June 1957, 53-8158 was assigned to McClellan Air Force Base in Sacramento, California; 53-8157 followed a year later. In February 1959, the two YC-121Fs were placed in storage at Davis Montham Air Force Base in Tucson, Arizona. Both aircraft were sold to the Flying Tiger Line 1963. The fuselages of the two YC-121Fs were used with wings, engines, and tails from two 1049Gs and pressed into cargo transport service in 1963. In 1966, both aircraft were sold to North Slope Aviation Company in Alaska. Serial number 53-8158 (N174W) was written off in May 1970. Serial number 53-8157 (N173W) was sold to Aviation Specialties and written off in June 1973.

Along with the military versions, Lockheed had designed a turboprop Super Constellation airliner in 1952 designated as the Model 1249B. The aircraft was planned to have a maximum speed of 451 mph (726 km/h) and a maximum range of 4,125 miles (6,639 km). However, the 1249B was not pursued, and the L-188 Electra eventually took its place.


An ad for the turboprop Super Constellation as Lockheed made a light push to interest airlines in the concept. There were no takers, and Lockheed developed the L-188 Electra instead.

The Lockheed Constellation by Peter J. Marson (2007)
Lockheed Constellation by Curtiss K. Stringfellow and Peter M. Bowers (1992)
Lockheed Aircraft since 1913 by René J. Francillon (1987)
Lockheed C-121 Constellation by Steve Ginter (1983)
Characteristics Summary YC-121F by US Air Force (1 April 1957)
Lockheed Constellation by Dominique Breffort (2006)


Blackburn B-20 Experimental Flying Boat

By William Pearce

On 13 February 1935, John Douglas Rennie submitted a patent application for “Improvements in and relating to Seaplanes.” Rennie was the Chief Seaplane Designer for the Blackburn Aeroplane and Motor Company, which was renamed in 1936 as Blackburn Aircraft Ltd. Rennie’s design idea was for the lower portion of the flying boat’s hull to be sealed and extend for takeoff and landing. The extendable hull would essentially act as the aircraft’s main float.


An excellent view of the Blackburn B-20 highlighting the aircraft’s extended hull, retracted wingtip floats, and well-engineered cowlings for the Vulture engine.

In order to provide clearance for the propellers, traditional flying boats have some combination of a parasol or strut-mounted wing positioned above the fuselage, a gull wing, and a tall hull. In addition, the hull and wing are designed for the essential task of lifting the aircraft from the water, but they are far from optimized for cruise flight. All of these compromises add significant drag to the aircraft. With Rennie’s hydraulically-operated extendable hull, the flying boat’s cross section with the hull retracted was much more like that of a conventional aircraft, and drag was significantly reduced. In addition, when the hull was extended, the aircraft assumed the ideal angle for takeoff and landing, which allowed the aircraft’s wing to have an angle of incidence optimized for cruise flight when the hull was retracted. Rennie’s patent also included retractable wingtip floats.

Rennie was granted Great Britain patent 433,925 on 22 August 1935. In 1936 the British Air Ministry issued Specification R.1/36 for a small, general purpose flying boat capable of cruising at 230 mph (370 km/h). Rennie and Blackburn responded with a twin-engine flying boat that featured a retractable hull. Blackburn’s design carried the company designation B-20. The Air Ministry ordered the Saunders-Roe A.36 Lerwick for Specification R.1/36, but they were sufficiently intrigued by the Blackburn B-20 to order a prototype, which was later assigned serial number V8914.

Technically, the B-20 was more of a floatplane with a retractable center main float than a flying boat. However, when the float was retracted, the aircraft took on the appearance and configuration of a flying boat. The B-20 had a high wing and was of all-metal, stressed-skin construction. All of the control surfaces were fabric covered. With the exception of the extending hull, the aircraft had a conventional layout. The B-20 had a standard crew of six. The fuselage housed a bombardier’s compartment in the nose. The fight deck was located well forward of the wing attachment and provided the pilot and copilot a good view. Behind and slightly below the cockpit was the flight engineer, navigator, and observer’s compartment. Under the wing was a wardroom with sleeping accommodations for two, followed by the crew’s quarters with accommodations for four, a galley, and a lavatory.


This side view of the B-20 illustrates how the hull moved forward as it was extended. The rear member of each of the four hull mounts was a hydraulic cylinder that actuated the extension and retraction of the hull.

The one-piece wing had three main spars, a straight leading edge, and a tapered trailing edge. Mounted in a nicely streamlined nacelle on each wing was a Rolls-Royce Vulture II X-24 engine capable of 1,800 hp (1,342 kW) for takeoff. The engine had an international rating of 1,780 hp (1,327 kW) at 4,000 ft (1,219 m) and 1,660 hp (1,237 kW) at 13,500 ft (4,115 m). A scoop under the engine nacelle housed the engine’s coolant radiator and oil cooler. Each engine turned a three-blade, constant-speed, de Havilland propeller. Unlike the patent design, which featured wing floats that retracted into the engine nacelles, the wing floats of the B-20 retracted outward to be flush with the wing and form the wingtip.

The extendable hull had five watertight compartments. The center compartment housed four fuel tanks with a total capacity of 1,172 US gallons (976 Imp gal / 4,437 L). The hull also housed most of the mooring equipment. Four hydraulic cylinders mounted in the fuselage controlled the extension and retraction of the 48 ft 9 in (14.86 m) hull. The hydraulic cylinders extended the hull approximately 5 ft 8.25 in (1.73 m) down from the fuselage for operating on the water’s surface. Forward of each hydraulic cylinder was a hinged triangular frame mounted to one point on the fuselage and two points on the hull. As the hull extended down, it also traversed forward. This movement of the hull gave the aircraft the proper angle for landing and taking off. Entry to the fuselage was achieved with the hull extended. Hatches under the fuselage led to the bombardier’s station, the wardroom, and the galley. A ladder that hinged down from the hatch under the bombardier’s station was the main access point.

Although the prototype was unarmed, the B-20’s planned armament consisted of two .303 machine guns in the nose, a dorsal turret with two .303 machine guns, and a tail turret with four .303 machine guns. In each wing, two compartments between the engine nacelle and the fuselage could each house a 500 lb (227 kg) bomb or two 250 lb (113 kg) bombs.


The B-20 on the water looked a little ungainly with its hull extended. Note the access ladder between the hull and the fuselage.

The Blackburn B-20 had a wingspan of 82 ft 2 in (25.04 m) with the floats retracted and 76 ft (23.16 m) with the floats extended. The aircraft was 69 ft 7.5 in (21.22 m) long, and was 25 ft 2 in (7.67 m) tall on its beaching gear with the hull extended. Without the turrets, the B-20 had a top speed of 322 mph (518 km/h) at 15,000 ft (4,572 m), 302 mph (486 km/h) at 5,750 ft (1,753 m), and 280 mph (451 km/h) at sea level. With the proposed turrets, the aircraft’s performance fell to a maximum speed of 306 mph (492 km/h) at 15,000 ft (4,572 m), 288 mph (464 km/h) at 5,750 ft (1,753 m), and 268 mph (431 km/h) at sea level. Cruising speed was 200 mph (322 km/h), and the B-20’s range was 1,500 miles (2,414 km). The aircraft had a normal weight of 35,000 lb (15,876 kg).

The B-20 was completed at Blackburn’s factory in Dumbarton, Scotland, near the River Clyde. The aircraft made its first flight on 27 March 1940, piloted by Blackburn’s test pilot Harry Bailey. Another four or five flights were made with some aileron trouble, but otherwise there were no issues. The extending hull worked well, although its extension and retraction in flight were not entirely smooth. Once extended, the hull offered an open platform from which to conduct mooring operations, and the aircraft was well-behaved on the water.


The B-20 providing a good view of the wing float design. Note the Short Sunderland and what appears to be a Short Empire framed nicely between the B-20’s hull and fuselage.

On 7 April 1940, Bailey was joined by Blackburn test engineer Fred Weeks, Blackburn aircraft riggers Sam McMillan and Duncan Roberts, and Rolls Royce flight engineer Ivan Waller. The task of the day was to complete high-speed tests in the B-20. During the fight, the aircraft reached an unofficial speed of 345 mph (555 km/h). On the next run, an aileron experienced flutter and failed, sending the B-20 out of control. The aircraft crashed in the Firth of Clyde off Garroch Head. Weeks and Waller were able to successful bail out and were picked up by the HMS Transylvania, a merchant ship converted to an auxiliary cruiser. Bailey also bailed out but was too low for his parachute to fully open. His body was recovered from the sea. However, the bodies of McMillan and Roberts were never found.

Even though its flight career was very short, the B-20 had given every indication that its hull design significantly improved performance. Based on the B-20 design, the Blackburn B-40 and B-44 were proposed. The B-40 was in response to Specification R.13/40. The aircraft was a twin-engine flying boat transport powered by two Bristol Centaurus radial engines and intended as a possible replacement for the Short Sunderland. The B-40 was larger and heavier than the B-20 and had twice the range. Two B-40 prototypes were ordered on 9 September 1941, but the aircraft’s poor single engine performance and other priorities led to its cancellation on 6 January 1942. The B-44 was a single-engine floatplane fighter designed to Specification N.2/43. The aircraft was armed with four 20 mm cannons and powered by a Napier Sabre H-24 engine turning contra-rotating propellers. Two B-44 prototypes were ordered in October 1942, but the project was cancelled shortly after a mockup was built. An analysis of the design indicated that the B-44 would be difficult to handle on the water.

In August 1998, one of the B-20’s Vulture engines was recovered after becoming tangled in the nets of a trawler. The B-20’s crash site was subsequently classified as a war grave. What remains of the Vulture engine is now on display at the Dumfries and Galloway Aviation Museum in Scotland.


Rear view of the B-20 helps visualize the defense the four .303 machine guns in the turret would have provided.

Aircraft of the Fighting Powers Volume 6 by Owen Theyford (1945/1980)
Blackburn Aircraft since 1909 by A. J. Jackson (1989)
British Experimental Combat Aircraft of World War II by Tony Buttler (2012)
British Prototype Aircraft by Ray Sturtivant (1990)
Jane’s All the World’s Aircraft 1945/46 By Leonard Bridgman (1946)
– “Improvements in and relating to Seaplanes” GB patent 433,925 by John Douglas Rennie (applied 13 February 1935).