Speed of the Wind 1936 group

Eyston – Eldridge Speed of the Wind / Flying Spray

By William Pearce

As a teenager, Englishman George Edward Thomas Eyston was forbidden from racing bicycles by his parents. Unable to resist the thrill of motorsports, Eyston raced motorcycles under an assumed name to hide his activities from his parents. Eyston took a break from racing while he fought in World War I but returned to the sport shortly after the war, while he was in his mid-twenties. Eyston liked setting records, and in the late 1920s, he took on Ernest Arthur Douglas Eldridge as his Record Attempt Manager. Eldridge was a racer and record-setter in his own right, most famously setting a World Land Speed Record (LSR) on 12 July 1924 at Arpajon, France, driving the FIAT Mephistopheles at an average of 146.013 mph (234.985 km/h) over the flying km (.6 mi).

Speed of the Wind 1935 Getty 637451646

The recently completed, but yet to be painted, Speed of the Wind. The exhaust system and mufflers were used for the early-morning tests at Brooklands. Note the surface radiator in front of the cockpit. (Getty image)

Many of Eyston’s records were set on the speed ring at the Autodrome de Linas-Montlhéry track south of Paris, France. He became such a prolific record-breaker that the French dubbed him “le Recordman.” Eldridge and Eyston believed that setting speed records was a better business than racing. In racing, the winner would only be on top until the next race, which would be in hours or days or a week. But with speed records, the publicity and sponsorship opportunities would continue until the record was broken, which could be months or years. In addition, a bad race could garner negative publicity, but a failed record attempt mostly went unnoticed. In 1934, Eyston and Eldridge designed a car specifically to set endurance records between one and 48 hours. The concept of such a car may have been partly inspired by John Cobb and his Napier-Railton racer, which was completed in 1933. The Eyston and Eldridge endurance car was named Speed of the Wind, although some sources refer it as Spirit of the Wind.

Speed of the Wind was large and streamlined, but had a rather conventional appearance for a record-breaker. The car was powered by an unsupercharged Rolls-Royce Kestrel V-12 engine. The engine had a 5.0 in (127 mm) bore and a 5.5 in (140 mm) stroke. It displaced 1,296 cu in (21.2 L) and produced around 500 hp (373 kW). A normally aspirated engine was selected for increased reliability for the up to 48 hours of continuous operation needed for the endurance record runs. The particular Kestrel engine acquired for Speed of the Wind had been used by Rolls-Royce to power a test cell ventilation blower. Rolls-Royce designed and built a special shallow oil pan to provide enough ground clearance for the low-slung engine installed in Speed of the Wind.

The engine was installed in the front of the car and powered the front wheels via a four-speed transmission. The front axle had independent suspension supported by a transverse leaf-spring. Watching Citroën cars going endlessly around the Montlhéry speed ring inspired Eyston to use the front-wheel drive configuration on Speed of the Wind; it struck him that the front-wheel drive layout might offer a slight advantage for endurance records on circular tracks. The front drive wheels pulled the car around the course without skidding, while cars with rear drive wheels had a tendency to skid as they were pushed around the course.

Speed of the Wind 1935 Getty 637472104

The “nostrils” on the front of the car seldom held lights and were often at least partially covered. The caps for the left and right fuel tanks are visible on the car’s sides, just in front of the tires. (Getty image)

At the very front of the car and cut low into the body was a rectangular slot that fed air to a radiator. Two large holes that resembled nostrils were cut into the bodywork above the slot. These holes housed lights and also supplied additional cooling air to the radiator. The holes were often either partially or completely covered during many record runs. Covering the holes was a way to improve the car’s aerodynamics when the cooling system was not fully taxed or when the lights were not needed. A three-core surface radiator for oil cooling was positioned between the engine and the cockpit.

The cockpit was located between the surface radiator and rear axle. The lack of a driveshaft to the rear axle of the front-wheel-drive car enabled the driver’s seat to be positioned very low. The driver was protected by a windscreen and had removable panels on both sides of the cockpit to improve streamlining and ease access to the car. A large fuel tank was located on each side of the car, between the engine and cockpit. The rear of the car tapered back and down, while a faring behind the headrest extended back to form a short tail. Speed of the Wind was built by the C.T Delaney works, in Carlton Vale, northwest of London.

The completed, but unpainted, car was tested at Brooklands in 1935. A special muffler system was added to quiet the car for the early-hour and somewhat secretive testing. Once everything seemed in order, Speed of the Wind was painted red, and the car and its team set off for the Bonneville Salt Flats in Utah, United States. On the same ship was Malcolm Campbell, also traveling to Bonneville to set speed records with the last of the Blue Bird LSR cars. Eyston and Ernest arrived at Bonneville in time to see Campbell set his last LSR on 3 September 1935. Campbell covered 1 km (.6 mi) at 301.473 mph (485.174 km/h) and a mile (1.6 km) at 301.129 mph (484.620 km/h).

Ricardo Diesel Kestrel RR-D

The Rolls-Royce Kestrel-derived diesel engine built by Harry Ricardo. The side cover is removed to reveal the gearset that drove the sleeve valves. Note the fuel injectors positioned atop the cylinder bank.

In addition to the straight course setup for LSR attempts, Bonneville had circular courses 10 to 13 miles (16 to 21 km) in length (depending on the year and conditions) for endurance records. Earlier in 1935, American Ab Jenkins and Briton John Cobb had battled each other for various endurance records in their respective Duesenberg Special and Napier-Railton racers. When Eyston and Speed of the Wind arrived at Bonneville, Jenkins held most of the endurance records, including 24 hours at an average of 135.580 mph (218.195 km/h), covering 3,354 miles (5,398 km). One exception was the 10-mile (16.1-km) record, which was set by New Zealander Norman ‘Wizard’ Smith in the Fred H. Stewart Enterprise at 164.084 mph (264.077 km/h) on 26 January 1932.

On 6 September 1935, Eyston in Speed of the Wind established new records, covering 10 miles (16.1 km) at 167.09 mph (268.91 km/h), 100 km (62 mi) at 161.13 mph (259.31 km/h), 100 miles (161 km) at 159.59 mph (256.84 km/h), and 159.30 miles (256.37 km) in one hour. Mechanical difficulties with the front drive axle prevented the completion of additional endurance records.

Speed of the Wind was repaired, and another attempt was made on 16-17 September 1935. While slightly slower on the shorter records, Eyston and his co-drivers, Albert W. Denly and Christopher S. Staniland, managed to keep the car going for 24 hours. A 12-hour record was set at 143.97 mph (231.70 km/h), covering 1,728 miles (2,780 km), and 5,000 km (3,107 mi) was covered at 140.43 mph (226.00 km/h). The average speed for the 24-hour record was 140.52 mph (226.15 km/h), and a distance of over 3,372 miles (5,427 km) was traveled.

Flying Spray April 1936

With the Ricardo Diesel engine installed, the car became Flying Spray. At Bonneville in April 1936, the car now had an enclosed cockpit. Not seen is the cockpit cover. Note the disc wheel covers used to make the wire wheels more aerodynamic.

Earlier in 1935, rules governing vehicles powered by compression ignition (diesel) engines were officially recognized. Eyston had set numerous diesel endurance records which weren’t recognized in America, and the American diesel LSR of 137.195 mph (220.794 km/h) set by Wild Bill Cummings in the Cummins Diesel Special #5 on 2 March 1935 was not internationally recognized. Eyston saw an opportunity to break all existing diesel LSRs and set new world records that would be recognized by all.

British engineer Harry Ricardo had built a diesel, sleeve-valve version of the Kestrel. Known as the RR/D (Rolls-Royce/Diesel) or Ricardo Diesel. The engine could be fitted to Speed of the Wind with only minor modifications. Compared to the Kestrel, the Ricardo Diesel’s bore was decreased by .25 in (6.35 mm) to 4.75 in (121 mm). This provided room for the single sleeve valve around each cylinder. The sleeve valves were driven from the rear of the engine by a gearset that ran along the outer side of each cylinder bank. A new cylinder head featured a vortex-type combustion chamber with a fuel injector positioned vertically atop the chamber. The Ricardo Diesel displaced 1,170 cu in (19.2 L) and produced 340 hp (254 kW) at 2,400 rpm.

Flying Spray April 1936 run

Flying Spray being serviced before a record attempt in April 1936. Note that the nostrils are completely covered.

With the diesel engine installed, the car was renamed Flying Spray. An enclosed canopy was added to the car. In February 1936, the car was run at Pendine Sands, but no records were set. It was then sent to Bonneville, where on 29 April 1936, Eyston and the Flying Spray established new diesel LSRs. A total of three complete (out and back) runs were made, and the middle set was the fastest. Eyston set the diesel flying km (.6 mi) record at 159.10 mph (256.05 km/h), and the flying mile (1.6 km) record at 158.87 mph (255.68 km/h). These records stood until 11 September 1950, when they were broken by Jimmy Jackson in the Cummins Diesel Special #61 Green Hornet.

The spark ignition Kestrel engine was reinstalled, and the car was once again called Speed of the Wind. Two scoops were added atop the cowling to bring in air for the engine, and the cockpit canopy was discarded. Eyston and co-driver Denly were back at Bonneville in July to improve upon their endurance records. On 6 July 1936, a one-hour record of 162.528 mph (261.564 km/h) was set, breaking the old record by three mph (5 km/h). However, mechanical trouble brought a halt to the run before other records were broken.

Speed of the Wind 1936 group

A group photo from August 1936 shows Eyston in the cockpit and Eldridge on the far right. With the spark ignition engine reinstalled, the car was once again called Speed of the Wind. Note that the nostrils are nearly covered, new intake scoops have been added to the engine cowling, and the enclosed canopy has been discarded.

The car was repaired, and Eyston and Denly set off in Speed of the Wind to break more records on 12 July 1936. The action did not stop until two days later, on 14 July. A 5,000 km (3,107 mi) record was set at 150.221 mph (241.758 km/h); 3,578 miles (5,759 km) were covered in 24 hours at an average of 149.096 mph (239.947 km/h); a 10,000 km (6,214 mi) record was set at an average speed of 137.453 mph (221.210 km/h); and a 48-hour record was achieved at an average of 136.349 mph (219.432 km/h), which covered 6,545 miles (10,533 km).

Eyston and Speed of the Wind were back at Bonneville in October 1937, along with Thunderbolt—an LSR car built by Eyston and Eldridge. Thunderbolt was powered by twin-Rolls-Royce R engines, and Eyston would race it and Speed of the Wind, which had been modified with an enlarged tail and a vane attached to its front right corner. The vane acted as a rudder to help push the car into the constant turn needed for the circular endurance course.

Speed of the Wind 1937 Eyston

The taller tail and nose mounted vane are clearly visible as Speed of the Wind passes the camera at Bonneville in late 1937.

Jenkins and the Mormon Meteor II had established a new set of endurance records. In late October, Eyston and Denly made an attempt in Speed of the Wind to take the endurance records back, but inclement weather brought a halt to the endeavor. Another attempt was made on 3 November, and a new 12-hour record was set at 163.68 mph (263.42 km/h). In that time, Eyston and Denly had covered 1,964 miles (3,161 km). Speed of the Wind also covered 2,000 miles (3,219 km) at an average speed of 163.75 mph (263.35 km/h). However, the run could not be continued to 24 hours because the Speed of the Wind team had run out of tires due to the earlier attempt.

Eyston would spend the next few years setting LSRs in Thunderbolt and no longer focused on endurance runs with Speed of the Wind. At the start of World War II, the car was stored at Eyston’s workshop in Willesden, northwest of London. Speed of the Wind / Flying Spray (and the workshop) were destroyed by a German bomb during the London Blitz in late 1940 and early 1941. The Ricardo Diesel that powered Flying Spray was preserved and is on display at the British National Motor Museum in Beaulieu, England.

Speed of the Wind 1937 Eyston service

Speed of the Wind is serviced in 1937 as Eyston sits in the Cockpit. Note the surface radiator and taller tail.

The Fast Set by Charles Jennings (2004)
The Land Speed Record 1920-1929 by R. M. Clarke (2000)
Reid Railton: Man of Speed by Karl Ludvigsen (2018)
– “An Interview with Capt. G. E. T. Eyston” by William Boddy, Motor Sport (October 1974)
– “Speed Record set by Eyston” San Bernardino Sun (4 November 1937)
The High-Speed Internal-Combustion Engine by Harry Ricardo (1955)
Engines & Enterprise: The Life and Work of Sir Harry Ricardo by John Reynolds (1999)

2 thoughts on “Eyston – Eldridge Speed of the Wind / Flying Spray

  1. Mr Paul Denly

    Great article! Thanks for showing this as my grandfather is Albert Denly and you have pictures here that I have never seen before and I have seen many! If you need any more things on Bert/Eyston please contact me.


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.