Category Archives: Through World War I

daimler-mercedes d vi back

Daimler-Mercedes D VI W-18 Aircraft Engine

By William Pearce

By 1915, the Germans had begun to experiment with very large aircraft known as Riesenflugzeug (giant aircraft). These aircraft had been developed from the G-class bombers and are often referred to as R-planes. In 1916, the potential of such an aircraft to carry heavy bombloads into enemy territory was recognized, and the deficiencies of airships that had been developed to serve in that same role was apparent. Efforts were undertaken to increase R-plane production and withdraw airships from long-range bomber missions.

mercedes d.vi (2)

The preserved Daimler-Mercedes D VI W-18 engine. The individual cylinders on each bank were linked by a common overhead camshaft housing. Note the water-jacketed copper intake manifolds. (Evžen Všetečka image via www.aircraftengine.cz)

To promote the development of larger and more capable R-planes, larger and more powerful aircraft engines were needed. As early as 1915, the Idflieg (Inspektion der Fliegertruppen or Inspectorate of Flying Troops) had encouraged various German engine manufacturers to develop large aircraft engines capable of 500 hp (375 kW). These engines were known as Class VI engines and would be used to power R-planes. Daimler Motoren Gesellschaft (Daimler) was one of the companies that worked to build a large Class VI aircraft engine.

Daimler’s design was known as the D VI, but it is also referred to as the Mercedes D VI or Daimler-Mercedes D VI. Daimler often used the Mercedes name for many of its products. The D VI engine utilized the basic cylinder from the 180 hp (134 kW) Daimler-Mercedes D IIIa engine and incorporated features from the 260 hp (194 kW) D IVa engine. Both of those engines were six-cylinder inlines. However, the D VI had three rows of six-cylinders, creating a W-18 engine. The center cylinder row was vertical, and the left and right rows were angled 40 degrees from the center row.

mercedes d.vi (3)

Front view of the D VI illustrates the water pump mounted directly in front of the center cylinder bank. Note the direct drive crankshaft. (Evžen Všetečka image via www.aircraftengine.cz)

The D VI engine used individual steel cylinders with one intake and one exhaust valve. The valves of each cylinder row were actuated by a single overhead camshaft driven from the rear of the engine via a vertical shaft. The camshaft acted upon rocker arms that protruded from the camshaft housing above each cylinder to the exposed cylinder valves. A water jacket made of pressed steel was welded to the cylinder. Each piston was made of a forged-steel head screwed and welded onto a cast iron skirt. The cylinder’s compression ratio was 4.7 to 1.

Each cylinder was attached to the two-piece steel crankcase via four studs. Most likely, the studs for the center cylinder row extended into the bottom half of the crankcase and helped secure the two crankcase halves. The crankshaft was supported by seven main bearings and was connected directly to the propeller. A water pump was driven by the crankshaft at the front of the engine. At the rear of the engine, a vertical shaft extending from the crankshaft drove a magneto for each cylinder bank and an oil pump. Each of the cylinders had two spark plugs.

Induction air was drawn into an air chamber inside the crankcase where it was warmed. The air then passed through two water-jacketed pipes cast integral with the lower crankcase half at the rear of the engine. The two pipes split into three inline carburetors, each feeding one cylinder bank via an intake manifold. The intake manifold was made of copper and was water-jacketed. The left cylinder bank had its intake manifold positioned on the right side. The center and right cylinder banks had their intake manifolds positioned on the left side. The exhaust was expelled from each cylinder via an individual stack on the side opposite the intake.

daimler-mercedes d vi back

Rear view of the D VI shows the engine’s induction stemming from the lower crankcase housing and feeding into the three carburetors.

The D VI had a 5.51 in (140 mm) bore and a 6.30 in (160 mm) stroke. The engine’s total displacement was 2,705 cu in (44.3 L). The D VI produced 513 hp (382 kW) at 1,440 rpm for takeoff and had a maximum continuous output of 493 hp (368 kW) at 1,400 rpm. Specific fuel consumption was .477 lb/hp/hr (290 g/kW/h). The engine weighed 1,636 lb (742 kg).

The Daimler D VI engine was first run in 1916. However, development of the D IIIa and D IVa engines took priority, causing the D VI to lag behind. The D VI passed a certification test in December 1918, but World War I was over by that time, and such and engine was no longer needed. Military restrictions imposed on Germany by the Treaty of Versailles most likely influenced the abandonment of the D VI engine, and no further work was undertaken.

The sole surviving D VI engine has been preserved and is on display at the Flugausstellung L.+ P. Junior museum in Hermeskeil, Germany.

mercedes d.vi (1)

The D VI engine had mounts cast integral with the upper crankcase, but the engine was never installed in any aircraft. Note the pedestal pads onto which the cylinders were mounted. (Evžen Všetečka image via www.aircraftengine.cz)

Sources:
Flugmotoren und Strahltriebwerke by Kyrill von Gersdorff, et. al. (2007)
Report on the 180 H.P. Mercedes Aero Engine by the Ministry of Munitions Technical Department, Aircraft Production (March 1918)
Report on the 260-H.P. Mercedes Aero Engine by the Technical Information Section of the Air Board (July 1917)
http://www.aircraftengine.cz/Hermeskeil/

Thomas X-8 engine

Thomas / Leyland X-8 Aircraft Engine

By William Pearce

John Godfrey Parry Thomas was a British engineer and was widely known as Parry Thomas. During World War I, Thomas was a member of the Munitions Invention Board and was brought on as the chief engineer at Leyland Motors in 1917 to help the firm develop an aircraft engine.

Allan Ferguson had been working at Leyland on the design of the aircraft engine. The engine Ferguson had designed was a 450 hp (336 kW), water-cooled W-18 with banks set at 40 degrees. Each bank consisted of two three-cylinder blocks, and there were plans to make a W-9 engine with just three banks of three cylinders. Long pushrods extended from camshafts in the crankcase between the cylinder banks to the top of the cylinders to actuate the overhead valves. Thomas felt that the W-18 engine would not be successful and proposed his own design, which won the approval of Leyland management.

Thomas X-8 engine

The Thomas (Leyland) X-8 engine was made from aluminum and had many interesting features. At the rear of the engine, the handle is attached to a dynamo for starting. Just above the dynamo is the crankshaft-driven water pump. The engine’s carburetors are mounted on either side of the water pump. Note the integral passageways leading from the carburetor to the cylinders. The oil sump tank is positioned in the lower engine Vee.

Assisted by Fred Sumner and Reid Railton, Thomas’ engine design was an X-8 with cylinder banks spaced at 90 degrees. Each cylinder bank consisted of two paired cylinders. The cylinder banks were cast integral with the aluminum crankcase, and nickel-chrome cylinder wet liners were heat-shrunk into the cylinder banks. An aluminum cylinder head was attached to each cylinder bank via eight bolts. A propeller gear reduction was incorporated into the engine. The gear reduction used bevel gears and reduced the propeller speed to .50 times crankshaft speed. The gear reduction kept the propeller position in line with the crankshaft.

A single overhead camshaft operated the two intake and two exhaust valves for each cylinder. The camshaft was driven via a vertical shaft at the rear of the engine. The valves were closed by leaf springs. Via adjustable screws, one end of a leaf spring was attached to an intake valve while the other end of the spring was attached to an exhaust valve. The springs were allowed to articulate at their mounting point so that as one valve was opened, additional tension was applied to the closed valve for an even tighter seal.

Two carburetors were positioned at the rear of the engine, with each carburetor providing the air/fuel mixture for one side of the engine. Each carburetor was mounted to an integral intake passageway in the crankcase, with four individual ducts branching off from the passageway. Each duct connected one cylinder to the intake passageway. Exhaust was expelled from the upper and lower engine Vees. Each cylinder had two spark plugs fired by either a magneto or battery ignition.

A water pump driven at the rear of the engine by the crankshaft circulated water through the engine at around 48 gpm (182 L). The coolant flowed into the cylinder banks and around the exhaust ports to keep the exhaust valves cool. A pipe system enabled water to flow through the hollow crankshaft at 10 gpm (36 L), cooling the three main bearings and two connecting rod bearings. The water also cooled the oil that flowed through the crankshaft and to the bearings. To further cool the oil, the water and oil flowed into the propeller gear reduction, where the oil passed along the finned outer side of the water-cooled propeller shaft.

Thomas leaf spring valves

While not of the X-8 engine, this drawing does depict the leaf spring valves, similar to the setup used in the X-8 engine. The leaf spring (5) held the valves (3 and 4) closed. Lobes (11) on the camshaft (12) acted on the rockers (9 and 10) to open the valves. The leaf spring mount (8) could move up and down to add tension on the closed valve for a tighter seal. (GB patent 216,607, granted 5 June 1924)

Attached to each of the crankshaft’s two crankpins was a master connecting rod, and three articulated rods were attached to each master rod. The crankshaft had both of its crankpins inline, which meant that the pistons for one cylinder bank would both be at top dead center at the same time. One source states that the crankpins were in the same phase, meaning the two cylinders of the same bank would be on the same stroke, essentially making the X-8 engine operate like two synchronized X-4 engines. This was reportedly done to prevent any rocking motion created by the front X-4 firing followed by a rear X-4-cylinder firing 90 degrees later. However, a different source says the cylinders were phased 360 degrees apart, which would make more sense. While the pistons of one cylinder bank were both at top dead center, one cylinder was starting the intake stroke while the other was starting the power stroke. The 360-degree phasing would create a rather smooth firing order, such as bank 1 front cylinder (1F), bank 2 rear cylinder (2R), 3F, 4R, 1R, 2F, 3R, and 4F. However, the engine’s true firing order is not known.

A dry-sump lubrication system was used. Oil from the engine was collected in a one gallon (4.5 L) tank mounted in the lower engine Vee. The oil was then returned to a main oil tank of approximately eight gallons (32 L) installed in the aircraft. For starting, the X-8 engine used an electric starter motor or a hand-cranked dynamo. The engine incorporated an interrupter gear for firing guns through the propeller arc.

The X-8 engine had a 6.0 in (152 mm) bore and a 4.5 in (114 mm) stroke. The engine displaced 1,018 cu in (16.7 L) and produced 300 hp (224 kW) at 2,500 rpm and 10,000 ft (3,048 m). Maximum engine speed was around 3,500 rpm. The X-8 engine weighed around 500 lb (227 kg). For the time, 500 lb (227 kg) was remarkably light for a 300 hp (224 kW) engine. The X-8 was noted as being very compact, but a list of engine dimensions has not been found.

Thomas X-8 drawing

Patent drawing of the X-8’s crankshaft with its inline crankpins. The water pump (4) housed the crankshaft-driven impeller (9). Water was pumped through an inlet (11), through a passageway (10), and into the pipe built-up in the hollow crankshaft. The water then flowed through the propeller shaft (36) to cool oil in an adjacent passageway (45).

The design of the Thomas X-8 was completed in December 1917 and submitted to the Air Ministry. Thomas initiated an extensive part-testing program that resulted in the creation of numerous test fixtures. In conjunction with the test-fixtures, A single-cylinder test engine was built and tested in 1918. The single-cylinder produced 37 hp (28 kW) at 2,500 rpm and 53 hp (40 kW) at 3,700 rpm. These outputs equated to 296 hp (221 kW) and 424 hp (316 kW) respectively for the complete eight-cylinder engine. However, the piston in the single-cylinder engine failed after five minutes of running between 3,500 and 3,700 rpm.

A complete X-8 engine was built and run for the first time in August 1918. Compression ratios of 5.8 and 6.3 were used on the single-cylinder engine, but the compression ratio of the complete engine has not been found. Reportedly, the engine was hastily assembled because government inspectors wanted the test two weeks earlier than planned. The X-8 engine’s lightly-built crankcase deformed and closed in the crankshaft bearing clearance, resulting in the engine seizing after a few hours of running.

With the end of World War I on 11 November 1918, further work on the Thomas X-8 engine was abandoned. A number of features from the aircraft engine were later used on the Leyland automotive straight-eight engine developed in 1920. Thomas went on to become a legend at the Brooklands Raceway, campaign one of the first aero-engined Land Speed Record (LSR) monster cars, and set a flying-mile (1.6 km) LSR of 170.624 mph (274.593 km/h) on 28 April 1926. Thomas tragically died in a crash attempting another LSR on 3 March 1927. His death marked the first time a driver was killed while in direct pursuit of a LSR.

Parry Thomas at Brooklands Getty

Thomas behind the wheel of his Leyland-Thomas racer at Brooklands on 4 October 1926. (Getty image)

Sources:
– “AIR: Parry Thomas’s Aero-Engine” by William Boddy, Motor Sport (February 1995)
– “The Life Story of Parry-Thomas” by Fred Sumner, Motor Sport (November 1941)
– “Internal Combustion Engine,” US patent 1,346,280 by John Godfrey Parry Thomas (granted 13 July 1920)
Reid Railton: Man of Speed by Karl Ludvigsen (2018)
Parry Thomas by Hugh Tours (1959)

Dutheil Chalmers Eole props rear

Dutheil-Chalmers Éole Opposed-Piston Aircraft Engine

By William Pearce

In 1906, the French company Société L. Dutheil, R. Chalmers et Cie (Dutheil-Chalmers) began developing aircraft engines for early aviation pioneers. The company was headquartered in Seine, France and was founded by Louis Dutheil and Robert-Arthur Chalmers. Although most of their engines were water cooled, the Dutheil-Chalmers’ horizontal aviation engines may have been the first successful versions of the horizontal type that is now used ubiquitously in light aircraft. Continuing to innovate for the new field of aviation, Dutheil-Chalmers soon developed a line of horizontal, opposed-piston engines.

Dutheil Chalmers Eole patent

Taken from the Dutheil-Chalmers British patent of 1909, this drawing shows the layout of the horizontal, opposed-piston engine. The dashed lines represent the bevel-gear cross shaft that synchronized the two crankshafts.

On 23 November 1908, Dutheil-Chalmers applied for a French patent 396,613 that outlined their concept of an opposed-piston engine, as well as other engine types. The French patent is referenced in British patent 26,549, which was applied for on 16 November 1909 and granted on 21 July 1910. In the British patent, Dutheil-Chalmers stated that the engine would have two crankshafts. The output shaft would not be a power shaft that connected the two crankshafts. Rather, the crankshafts would rotate in opposite directions (counter-rotating), and a propeller would mount directly to each crankshaft. This is the same power transfer method used in the SPA-Faccioli opposed-piston aircraft engines. While the Dutheil-Chalmers and SPA-Faccioli engines shared a similar concept and were built and developed at the same time, there is no indication that either company copied the other.

The Dutheil-Chalmers opposed-piston engines are sometimes referred to as Éole engines. It is not clear if Dutheil-Chalmers marketed the engines for a time under a different name or if Éole was just the name they gave to their line of opposed-piston engines. Éole is the French name for Aeolus, the ruler of the winds in Greek mythology. The engines were primarily intended to power airships. The two counter-rotating propellers would cancel out the torque associated with a single propeller on a standard engine. In addition, the opposed-piston engine’s two-propeller design did not require the heavy and cumbersome shafting and gears necessary for a conventional single-crankshaft engine to power two propellers.

Dutheil Chalmers Eole 2 view

Top and side view drawings of the four-cylinder, opposed-piston engine. The drawings show no valve train and differ slightly from photos of the actual engine, but they give an idea of the engine’s general layout.

Four different horizontal, opposed-piston engine sizes were announced, all of which were water-cooled. Three of the engines had the same bore and stroke but differed in the number of cylinders used. These engines had two, three, and four cylinders. Each had a 4.33 in (110 mm) bore and a 5.91 in (150 mm) stroke, which was an 11.81 in (300 mm) stroke equivalent with the two pistons per cylinder. The two-cylinder engine displaced 348 cu in (5.7 L) and produced 38 hp (28 kW) at 1,000 rpm. The engine weighed 220 lb (100 kg). The three-cylinder engine displaced 522 cu in (8.6 L) and produced 56 hp (42 kW) at 1,000 rpm. The engine weighed 397 lb (180 kg). The four-cylinder engine displaced 696 cu in (11.4 L) and produced 75 hp (56 kW) at 1,000 rpm. The engine weighed 529 lb (240 kg). It is not clear if any of these engines were built.

The fourth engine was built, and it was the largest opposed-piston engine in the Dutheil-Chalmers line. The bore was enlarged to 4.92 in (125 mm), and the stroke remained the same at 5.91 in (150 mm)—an 11.81 in (300 mm) equivalent with the two pistons per cylinder. The four-cylinder engine displaced 899 cu in (14.7 L) and produced 97 hp (72 kW) at 1,000 rpm. Often, the engine is listed as producing 100 hp (75 kW). The four-cylinder engine weighed 794 lb (360 kg).

Dutheil Chalmers Eole front

This Drawing illustrates the front of the Dutheil-Chalmers opposed-piston engine. Note the cross shaft that synchronized the two crankshafts. The gear on the cross shaft drove the engine’s camshaft. The pushrods, rockers, and valves are visible.

Only the 97 hp (72 kW) engine was exhibited, but it was not seen until 1910. The engine was displayed at the Paris Flight Salon, which occurred in October 1910. The engine consisted of four individual cylinders made from cast iron. The horizontal cylinders were attached to crankcases on the left and right. Threaded rods secured the crankcases together and squeezed the cylinders between the crankcases. Each crankcase housed a crankshaft, and the two crankshafts were synchronized by a bevel-gear cross shaft positioned at the front of the engine. A two-blade propeller was attached to each crankshaft. The propellers were phased so that when one was in the horizontal position, the other was in the vertical position.

Near the center of the cross shaft was a gear that drove the camshaft, which was positioned under the engine. The camshaft actuated pushrods for the intake valves on the lower side of the engine and the exhaust valves on the upper side of the engine. The pushrods of the intake valves travel between the cylinders. All of the pushrods acted on rocker arms that actuated the valves positioned in the middle of the cylinder. Each cylinder had one intake and one exhaust valve.

No information has been found that indicates any Dutheil-Chalmers Éole opposed-piston engines were used in any airship or aircraft. Still, it is an unusual engine conceived and built at a time of great innovation, not just in aviation, but in all technical fields.

Dutheil Chalmers Eole props rear

The 97 hp (72 kW), four-cylinder, eight-piston engine on display at the Paris Flight Salon in 1910. The engine has appeared in various publications as both a Dutheil-Chalmers and an Éole. Note the rods that secured the crankcases together. What appears to be the camshaft can be seen under the engine.

Sources:
Les Moteurs a Pistons Aeronautiques Francais Tome II by Alfred Bodemer and Robert Laugier (1987)
– “Improvements in or connected with Motors especially applicable to Aviation and Aerostation Purposes” GB patent 26,549 by L. Dutheil, R. Chalmers and Company (granted 21 July 1910)
– “Motors for Aerial Navigation—V” by J. S. Critchley, The Horseless Age (26 October 1910)
– “Aerial Motors at the Salon” by Oiseau, Flight (5 November 1910)

SPA-Faccioli N3 rear

SPA-Faccioli Opposed-Piston Aircraft Engines

By William Pearce

Aristide Faccioli was an Italian engineer. In the late 1800s, he became fascinated with aviation and worked to unravel the mysteries of powered flight. With little progress in aviation, Aristide had turned to automobile development by 1898. He worked for Ceirano GB & C and designed Italy’s first automobile, the Welleyes. Ceirano GB & C did not have the finances to produce the automobile, so a new company was established for automobile production. This company was called Fabbrica Italiana Automobili Torino or FIAT, and it bought the rights, plans, and patents for the Welleyes. The Welleyes became FIAT’s first production automobile, the 3 ½ CV.

SPA-Faccioli N1

The SPA-Faccioli N.1 engine with its four cylinders, each housing two opposed pistons. At the rear of the engine (bottom of image) is the cross shaft linking the two crankshafts. Note the gear on the cross shaft that drove the camshaft.

Aristide became FIAT’s first technical director, but he left in 1901 to start his own automobile company. In 1905, Aristide moved from automobile production to engine design. However, Aristide’s focus returned to aviation once he learned of the successful flights of the Wright Brothers and other early pioneers. In 1907, Aristide shut down his companies and worked on aircraft and aircraft engine designs. In 1908, Aristide visited a close friend, Matteo Ceirano, seeking financial support. Matteo was one of Ceirano GB & C’s founders and was a co-founder of SPA (Società Ligure Piemontese Automobili). Matteo and SPA backed Aristide and encouraged him to continue his aeronautical work.

Aristide’s first engine was the SPA-Faccioli N.1. The N.1 was a water-cooled, horizontal, opposed-piston engine. Each side of the engine had a crankshaft that drove pistons in the engine’s four, individual cylinders. Attached to each crankshaft was a propeller. The crankshafts and their propellers turned in opposite directions (counter-rotating). When viewed from the rear of the engine, the right propeller turned clockwise, and the left propeller turned counterclockwise. The two-blade, wooden propellers were phased so that when one was horizontal the other was vertical. The dual, counter-rotating propeller design was an effort to eliminate engine vibrations and cancel out propeller torque.

SPA-Faccioli N2

This rear view of the SPA-Faccioli N.2 illustrates that the engine was much more refined than the N.1. Note the magneto driven above the cross shaft and the gear train driven below.

The two crankshafts were synchronized by a bevel-gear cross shaft that ran along the rear of the engine. Geared to the cross shaft was a camshaft that ran under the engine. The camshaft actuated the intake and exhaust valves that were located in the middle of each cylinder. As the two pistons in each cylinder came together, the air/fuel mixture was compressed. Once the mixture was ignited by the spark plug in the middle of the cylinder, the expanding gases pushed the pistons back, operating like any other four-stroke engine. The N.1 had a 4.41 in (112 mm) bore and a 5.91 in (150 mm) stroke. The two pistons per cylinder effectively gave the N.1 an 11.81 in (300 mm) stroke. The engine displaced 721 cu in (11.82 L) and produced 80 hp (60 kW) at 1,200 rpm. The N.1 weighed 529 lb (240 kg).

The N.1 engine was installed in the Faccioli N.1 aircraft, which was a triplane pusher design. Flown by Mario Faccioli, Aristide’s son, the engine, aircraft, and pilot all made their first flight on 13 January 1909. The aircraft quickly got away from Mario, and the subsequent crash injured Mario and destroyed the aircraft. Although brief, the flight marked the first time an Italian-designed and built aircraft was flown with an Italian-designed and built engine. With all parties undeterred, the N.1 engine was installed in the Faccioli N.2 aircraft (a biplane pusher with a front-mounted elevator) and flown by Mario in June 1909. After a few flights, Mario and the N.2 aircraft were involved in an accident that again injured Mario and destroyed the aircraft.

Faccioli N3 aircraft

Mario Faccioli sits on the Faccioli N.3 aircraft in 1910. Note the covers over the N.2 engine’s cross shaft bevel gears. Since the propellers rotated in opposite directions, when one was vertical, the other was horizontal.

After these setbacks, Aristide designed a new engine, the SPA-Faccioli N.2. The N.2 had many features in common with the N.1: water-cooling, opposed-pistons, dual crankshafts, a bevel-gear cross shaft, and counter-rotating propellers. However, the N.2 was a single cylinder engine. The engine’s magneto was driven from the cross shaft. The N.2’s intake was positioned on the bottom side of the engine, and exhaust was expelled from the top side. The N.2 had a 3.94 in (100 mm) bore and a 5.12 in (130 mm) stroke—a 10.24 in (260 mm) equivalent for the two pistons per cylinder. The engine displaced 249 cu in (4.08 L) and produced 20 hp (15 kW) at 1,200 rpm and 25 hp (19 kW) at 1,500 rpm. The N.2 weighed 106 lb (48 kg).

The N.2 engine was installed in the Faccioli N.3 aircraft. With a very similar layout to the N.2 aircraft, the N.3 pusher biplane was smaller and did not have the front-mounted elevator. Mario was again the test pilot, and he first flew the aircraft on 12 February 1910. Many flights were made throughout February and March. On 26 March 1910, one propeller came off the engine and damaged the aircraft while it was in flight. Mario was injured in the subsequent crash, and the N.3 aircraft was damaged. Aircraft and pilot flew again in the summer, but Aristide was already working on a new aircraft design.

SPA-Faccioli N3 rear

This rear view of the SPA-Faccioli N.3 shows many features common with the N.2 engine. However, note the 20 degree cylinder angle extending from the crankshafts. The camshaft was driven from the cross shaft and extended through the engine. Two pushrods extend from both the top and bottom of the camshaft. The black plugs in the center of the cylinders cover ports for spark plugs. (W. R. Pearce image)

The N.2 engine was installed in the Faccioli N.4 aircraft, a further refinement of the Faccioli line. The aircraft was first flown by Mario in July 1910. On 15 October 1910, Mario used the N.4 aircraft to get his Italian pilot’s license (No. 21). This was the first time an Italian-designed and built aircraft was used to obtain a pilot’s license.

For his next aircraft, the Faccioli N.5, Aristide needed more power. The new SPA-Faccioli N.3 engine was built upon knowledge gained from the previous engines. Again, the engine was water-cooled with opposed-pistons and had dual crankshafts (synched by a bevel-gear cross shaft) that drove counter-rotating propellers. However, the cylinder arrangement of the N.3 was unique. In essence, the N.3 was made up of two V-4 engines mounted horizontally and attached together via their combustion chambers. The cylinders of the complete engine formed a diamond shape, with the cylinders angled at 20 degrees relative to the crankshaft. This gave the cylinders a 160 degree bend at their middle. Technically, the pistons no longer shared a common cylinder, but the cylinders did still share a combustion chamber. Some sources define the N.3 as a four-cylinder opposed-piston engine, and other sources define it as an eight-cylinder engine in which opposed pairs of cylinders shared a common combustion chamber.

SPA-Faccioli N3 front

The N.3 engine’s intake manifold can be seen on the left side of the image; the exhaust ports are also visible to the right of the valves. Note the camshaft extending through the engine, and the pushrods that actuated the valves. The front side of the engine still has its two spark plugs.

Two magnetos were driven from the cross shaft at the rear of the N.3 engine. The magnetos fired one spark plug per cylinder pair. The spark plugs were positioned either on the front of the engine or on the back, depending on the cylinder. The cross shaft also drove a short camshaft that extended through the diamond between the cylinders. Via pushrods and rocker arms, the camshaft actuated the one intake and one exhaust valve for each cylinder pair. An intake manifold mounted to the front of the engine brought air and fuel into the right side of the engine, and the exhaust was expelled from the left side of the engine. The N.3 had a 2.95 in (75 mm) bore and a 5.91 in (150 mm) stroke. The engine displaced 324 cu in (5.30 L) and produced 40 hp (30 kW) at 1,200 rpm and 50 hp (37 kW) at 1,600 rpm. The N.3 weighed 198 lb (90 kg).

The N.3 engine was finished in early 1911, but the Faccioli N.5 aircraft was not. The N.3 engine was installed in the N.4 aircraft, and Mario continued his role as chief pilot. The N.3-powered N.4 aircraft was entered in various competitions during the Settimana Aerea Torinese (Turinese Air Week) held in June 1911. On 25 June 1911, the last day of the competition, a mechanical failure on the aircraft caused Mario and the N.4 to crash. As with previous crashes, Mario was injured, and the aircraft was destroyed.

Faccioli N4 aircraft

The Faccioli N.4 aircraft was originally powered by the SPA-Faccioli N.2 engine. In 1911, the eight-cylinder SPA-Faccioli N.3 engine was installed. This image was taken in June 1911, with the N.3 engine installed and Mario in the aircraft.

It is not clear if the Faccioli N.5 aircraft was ever completed. Aristide’s involvement in aviation seemed to wane after the crash of the N.4 aircraft. In fact, the last SPA-Faccioli engine may have been a development of the N.3 undertaken exclusively by SPA without much involvement from Faccioli.

Built in late 1911 or early 1912, the SPA-Faccioli N.4 engine was an enlarged and refined N.3. With the N.4, eight cylinders were again positioned in a diamond configuration, angled at 20 degrees at the crankshafts and 160 degrees at the combustion chambers. Each opposed cylinder pair shared a common combustion chamber. Each cylinder pair now had two spark plugs, and they were fired by two magnetos, one driven directly from the rear of each crankshaft. The cross shaft synchronizing the crankshafts also served as the camshaft. At the rear of the engine, the cross shaft drove pushrods that acted on rocker arms mounted to the top and bottom of the engine. The rocker arms actuated the one intake and one exhaust valve per cylinder pair, positioned at the center of the cylinders. The intake manifold was positioned behind the engine, to the left of center. The manifold fed the air/fuel mixture to a passageway in the cylinder casting that ran on the left side of the valves. The exhaust was expelled to the right of the valves.

SPA-Faccioli N4 front

The SPA-Faccioli N.4 was the final refinement of the Faccioli engine line. The magnetos can be seen behind the engine; each was driven from the rear of a crankshaft. Note the two spark plugs per cylinder pair. (W. R. Pearce image)

The N.4 engine had a 3.74 in (95 mm) bore and a 5.91 (150 mm) stroke. The engine displaced 519 cu in (8.51 L) and produced 80 hp (60 kW) at 1,200 rpm and 90 hp (67 kW) at 1,600 rpm. The N.4 was 54 in (1.38 m) wide, 32 in (.82 m) long, 22 in (.57 m) tall, and weighed 441 lb (200 kg). No information has been found to indicate that the engine was installed in any aircraft.

After surviving so many close calls, Mario Faccioli was sadly killed in a plane crash in March 1915. The type of aircraft involved in the crash is not known. Aristide Faccioli never achieved the success he strived for and never recovered from his son’s death. He took his own life on 28 January 1920.

SPA-Faccioli N.3 and N.4 engines are preserved and on display in the Museo Storico dell’Aeronautica Militare in Vigna di Valle, Italy. An N.4 engine is displayed in the Museum of Applied Arts & Sciences, Museums Discovery Centre in Castle Hill, Australia. The museum lists the engine as a “300 hp, model 2-A,” undoubtedly confusing the eight-cylinder SPA-Faccioli engine with a SPA Type 2-A straight-eight engine. Also, the N.4 is positioned upside-down in its display stand.

SPA-Faccioli N4 rear

This rear view of the N.4 engine shows how the cross shaft also acted as the camshaft and directly drove the pushrods. The valves in the foreground are for the intake. The port for the intake manifold can just be seen at the center of the engine. Note the mounts for the magnetos and that the engine is upside-down in its display stand. (Museum of Applied Arts & Sciences image)

Sources:
Origin of Aviation in Italy by Piero Vergnano (1964)
Aeronuatica Militare Museo Storico Catalogo Motori by Oscar Marchi (1980)
Jane’s All the World’s Aircraft 1912 by Fred T. Jane (1912/1968)
http://collection.maas.museum/object/206770
http://www.treccani.it/enciclopedia/aristide-faccioli_(Dizionario-Biografico)/
http://it.wikipedia.org/wiki/Aristide_Faccioli

tips-1917-18-cylinder-rotary-engine

Tips Aero Motor Rotary Aircraft Engines

By William Pearce

From a very early age, Maurice A. Tips and his younger brother Ernest Oscar were interested in aviation. By 1909, the Belgian siblings had built their first aircraft: a canard-design, pusher biplane. The first engine installed in the aircraft proved underpowered and was replaced with a Gnome rotary. The engine was geared to two shafts, each driving a two-blade pusher propeller. Although the aircraft made some flights, its handling was unsatisfactory, and the design was not developed further. The aircraft did possess unique concepts, a theme continued in Maurice’s subsequent designs.

tips-1908-biplane

Rear view of Maurice and Ernest Oscar Tips’ 1909 biplane pusher. The aircraft was unable to fly with its original Pipe V-8 engine, but the lighter Gnome rotary enabled the aircraft to takeoff. Note the central gearbox that provided power to the shafts that turned the propellers via right-angle drives.

After the 1909 aircraft, Maurice refocused his efforts on aircraft engines. By 1911, Maurice had designed the first in a series of “valveless” rotary engines. All of Tips’ engines used a rotary valve system for cylinder intake and exhaust. Unfortunately, documentation on these engines is nearly non-existent; their exact order of development and specifications are not known with certainty.

tips-1912-7-cylinder-rotary-engine

Drawings of the 25 hp (19 kW) Tips engine of 1912. Air was drawn through the rotating suction tubes (5) which enable the intake port (14) and exhaust port (13) to align with the cylinder. The suction tubes were geared (9 and 10) to the stationary crankshaft (4).

The first engine was a seven-cylinder rotary that produced 25 hp (19 kW). The engine had a 2.76 in (70 mm) bore, a 4.33 in (110 mm) stroke, and a displacement of 181 cu in (3.0 L). Hollow “suction tubes” took the air/fuel mixture from the engine’s crankcase and delivered it to the cylinders. Each suction tube was geared to the engine’s fixed crankshaft. The suction tubes would spin at half the speed of the crankcase as it rotated. The top of the suction tube had two passageways. Each passageway would align with a common port near the top of the cylinder once every two revolutions of the crankcase. One passageway aligned to allow the air/fuel mixture to flow from the suction tube and into the cylinder. The second passageway aligned to allow the exhaust gases to flow from the cylinder out into the atmosphere.

The 25 hp (19 kW) Tips “valveless” rotary engine was installed in a monoplane built by Henri Gérard. It appears the aircraft was completed around 1913. However, the performance results of the engine and aircraft have not been found. As history unfolded, this was the only Tips engine installed in an aircraft.

Maurice and EO Tips Gerard monoplane

Henri Gérard and his mechanic by Gérard’s Tips-powered monoplane. The engine was a 25 hp (19 kW) seven-cylinder “valveless” rotary. Note the spark plug protruding from the top of each cylinder. (Tips Family Archive via Vincent Jacobs)

Maurice continuously refined the design of “valveless” rotary engines. In late 1912, two larger versions of the seven-cylinder engine were planned. A 50 hp (37 kW) version had a 4.33 in (110 mm) bore, a 4.72 in (120 mm) stroke, and a displacement of 487 cu in (8.0 L). The largest engine produced 70 hp (52 kW) and had a 4.41 in (112 mm) bore, a 5.12 in (130 mm) stroke, and a displacement of 547 cu in (9.0 L). An advertisement stated that all three engines would be displayed at the Salon de l’Automobile held in Brussels, Belgium in January 1913. In addition, the 25 hp (19 kW) engine was used to power a Tips airboat that was displayed at the show.

Engine development continued throughout 1913 and 1914. The most obvious change was that the suction tube was moved to be parallel with the cylinder, rather than at an angle as seen in the earlier engines. The newer engine design had an updated drive for the suction tubes, and the air/fuel mixture no longer passed through the crankcase; rather, it was delivered through a hollow extension of the crankshaft to a space under the suction tubes. A nine-cylinder engine of this design was built, but it is not clear if the engine was built in Europe or the United States; it was most likely built in the US.

tips-1913-and-1914-rotary-engines

The 1913 (left) and 1914 (right) versions of the Tips rotary engine. The major changes were to the suction tube drive and rotary valve. The small tube (no. 14 on the 1913 engine and no. 40 on the 1914 engine) in the stationary crankshaft extension provided oil to the crankshaft and connecting rod.

When World War I broke out, Maurice and Ernest Tips fled Belgium. Ernest made his way to Britain, where he worked with Charles Richard Fairey and helped start the Fairey Aviation Company in 1915. Ernest would return to Belgium in 1931 to start the Fairey subsidiary, Avions Fairey. He also produced the Tipsy series of light aircraft.

Maurice Tips traveled to the US in October 1915 and continued to design aircraft engines. It is quite possible that the nine-cylinder engine was built once Tips had established himself in the US. The engine had a 4.92 in (125 mm) bore and a 5.91 in (150 mm) stroke. It displaced 1,011 cu in (16.6 L) and produced 110 hp (82 kW). The nine-cylinder engine was approximately 35 in (.89 m) in diameter and weighed 290 lb (132 kg). A smaller nine-cylinder engine was designed, but it is not clear if it was built. The smaller engine had a 4.92 in (125 mm) bore and a 5.51 in (140 mm) stroke. It displaced 944 cu in (15.5 L) and produced 100 hp (75 kW).

Tips 9-cylinder rear

Rear view of the 110 hp (82 kW) nine-cylinder Tips “valveless” rotary engine. Air was drawn in through the hollow extension to the crankshaft where it mixed with fuel. Ports in the crankshaft extension led to a distribution chamber at the back of the engine. The air/fuel mixture was drawn into the suction tube behind each cylinder and then into the combustion chamber. (Tips Family Archive via Vincent Jacobs)

For more power, Maurice had the idea of coupling two 110 hp (82 kW) nine-cylinder engines in tandem to make an 18-cyinder power unit. The two engine sections would be placed front-to-front and rotate in the same direction. The engines would be suspended some 20 in (508 mm) below the propeller shaft. A Renold Silent (inverted tooth) drive chain positioned between the two engines would deliver power to the propeller shaft. By varying the size of the drives, a propeller speed reduction could be achieved. Drawings show a 5 in (127 mm) drive gear and a 7.5 in (191 mm) gear on the propeller shaft, which would give a .667 speed reduction. The tandem 18-cylinder engine had an output of 220 hp (164 kW) and was 606 lb (275 kg). The power unit was 62 in (1.57 m) long and 40 in (1.02 m) in diameter, not including the propeller shaft. It is unlikely that a tandem engine was built.

In 1917, The Tips Aero Motor Company was founded in Woonsocket, Rhode Island. That same year, Maurice applied for patents covering his new engine design, which incorporated many concepts from the earlier engines. Rather than a tandem engine, the new Tips engine was a single, 18-cylinder power unit. The rotary engine had two rows of nine cylinders and was housed in a stationary frame. The new engine employed both water and air cooling. The cylinders were arranged in pairs, with one in the front row of the engine and the other in the rear row. The crankshaft had only one throw, and the pistons for both cylinders in a pair were at top dead center on their compression strokes at the same time. The engine’s compression ratio was 5.25 to 1. Each cylinder had one spark plug at the center of its combustion chamber. The spark plugs were fired by two magnetos mounted to the front of the engine and driven from the propeller shaft.

Tips Tandem 18-cylinder engine

The Tips Tandem engine consisted of two nine-cylinder engines coupled together. An inverted tooth chain between the engines delivered power to the propeller shaft. (Tips Family Archive via Vincent Jacobs)

Most rotary engines had a fixed crankshaft and a crankcase that rotated. This arrangement created much stress on the crankshaft and crankcase and also imposed severe gyroscopic effects on the aircraft. The Tips engine employed several unique characteristics to resolve the drawbacks of traditional rotary engines. The crankshaft of the Tips engine rotated and was geared to the propeller shaft. The propeller shaft was geared to the crankcase, which allowed it to rotate in the opposite direction from the crankshaft and propeller. The end result was that when the crankshaft was turning at 1,800 rpm, the propeller would turn at 1,080 rpm, and the crankcase would rotate at 60 rpm in the opposite direction. Rotary engines in which the crankshaft and crankcase rotate in opposite directions and at different speeds are often called bi-directional or differential rotary engines.

The propeller shaft of the Tips 18-cylinder engine was geared to the crankshaft at a .600 reduction; the crankshaft gear had 18 teeth, and the propeller shaft’s internal gear had 30 teeth. For crankcase rotation, the 17 teeth on the propeller shaft gear engaged 51 teeth on one side of a countershaft to give a .333 gear reduction. The other side of the countershaft had 11 teeth that meshed with a 66-tooth internal gear attached to the crankcase and resulted in a further .167 reduction. Having the propeller and crankshaft rotating in opposite directions not only eliminated the gyroscopic effect inherent to conventional rotary engines, but it also neutralized the gyroscopic effect created by the propeller attached to a fixed engine.

tips-1917-18-cylinder-rotary-engine

The 18-cylinder Tips engine of 1917 was far more complex than the earlier engines. Note the paired cylinders separated by the rotary valve (24). The propeller shaft (10) was geared to the crankshaft (7) via reduction gears (8 and 9). The crankcase was geared to the propeller shaft via a countershaft (16).

On the exterior of the cylinder castings were numerous cooling fins. In addition, internal passageways for water cooling were in the cylinder castings. Between each pair of cylinders were a series of air passageways to further augment cooling. The engine did not have a water pump; rather, thermosyphoning and the relatively slow rotation of the crankcase enabled the circulation of cooling water from the internal hot areas of the cylinders out toward the cooling fins on the exterior of the cylinders. The engine’s rotation also aided oil lubrication from the pressure-fed crankshaft to the rest of the engine. The oil pump and carburetor were located on the stationary frame at the rear of the engine.

A flange was positioned on the crankshaft, between the connecting rods of the cylinder pair. Mounted on the flange via ball bearings was an eccentric gear with 124 teeth on its outer edge. Attached (but not fixed) to the crankcase was a master valve gear that had 128 teeth on its inner edge. The gears meshing with an eccentric action resulted in the master valve gear turning four teeth per revolution of the crankshaft. On the outer edge of the master valve gear was a bevel gear with 128 teeth. These teeth engaged a 16-tooth pinion attached to a rotary valve positioned between each cylinder pair. The four teeth per revolution of the master valve gear acting on the 16-tooth rotary valve resulted in the rotary valve turning at a quarter engine speed. Each hollow rotary valve had two intake ports and two exhaust ports.

tips-1917-18-cylinder-valves-and-gear

On the left is the rotary valve shown with the intake ports aligned (Fig 3). The air/fuel mixture entered the valve through ports in its lower end (27a). On the right is the valve with the exhaust ports aligned (Fig 5). Fig 4 shows a cross section of the rotary valve with intake ports (28), exhaust ports (29), and passageways for the flow of cooling water (30). Fig 8 shows the valve gear drive. The crankshaft (7) turned an eccentric gear (44) that meshed (42 and 41) with a gear mounted to the crankcase. The result is that a bevel gear (27) engaged a gear screwed to the bottom of the rotary valve (26 on Fig 3) and turned the valve once for every four revolutions of the crankshaft.

Air was drawn in through a carburetor at the rear of the engine. The air/fuel mixture flowed through a manifold bolted to the cylinder casting and into a passageway that led to a chamber around the lower part of the rotary valve. Holes in the valve allowed the air to flow up through its hollow middle and into the cylinder when the intake ports aligned. As the valve rotated, the exhaust ports would align with the cylinder, allowing the gases to escape out the top of the valve head and into the atmosphere. Passageways in the lower part of the rotary valve head brought in cooling water from the cylinder’s water jacket. Water flowed up through the rotary valve and back into the cylinder’s water jacket. The rotary valve was lubricated by graphite pads and held in place by a spiral spring and retaining cap around its upper surface.

The 18-cylinder Tips engine had a 4.5 in (114 mm) bore and a 6.0 in (152 mm) stroke. The engine displaced 1,718 cu in (28.1 L) and produced 480 hp (358 kW) at 1,800 rpm. The Tips engine weighed 850 lb (386 kg). At speed, the engine consumed 22 gallons (83 L) of fuel and 3 gallons (11 L) of oil per hour. The oil consumption was particularly high, even for a rotary engine, but the Tips engine was larger and more powerful than other rotary engines.

tips-1917-18-cylinder-rear

Rear view of the 480 hp (358 kW) Tips engine shows the extensive fining (22) that covered the engine. The fining and air passages (23) combined to turn the whole engine into a radiator to cool the water that flowed through the engine via thermosyphoning and centrifugal force.

In 1919, the engine was mentioned in a few publications. In 1920, Leo G. Benoit, Technical Manager at Tips Aero Motors, passed away. Benoit was said to be in charge of the engine’s design and construction. No further information regarding the engine and no images of the engine have been found. This lack of information could mean that the 480 hp (358 kW) Tips engine was never built. However, given the detailed description of the engine and that it was worked on from 1917 to at least 1920, the possibility certainly exists that the engine was built and tested.

Sometime before World War II, Maurice Tips returned to Belgium. He continued to design engines and applied for a patent on a rotary piston engine in 1938. This engine was not designed for aircraft use and bore no similarities to his early aircraft engines.

Tips 18-cylinder engine crankcase

Maurice Tips stands next to the unfinished crankcase casting for the 18-cylinder differential rotary engine. The holes in the crankcase’s outer diameter were for the rotary valves. The holes in the crankcase’s face were for water radiators, and the holes inside of the crankcase were for the cylinders. It is not known if a complete engine was built. (Tips Family Archive via Vincent Jacobs)

Sources:
Les Avions Tipsy by Vincent Jacobs (2011)
– “Valveless Rotary Combustion Engine” US Patent 1,051,290 by Maurice Tips (granted 21 January 1913)
– “Improvements in Rotary Combustion Engines” GB Patent 191307778 by Maurice Tips (application 15 April 1913)
– “Improvements in or relating to Rotary Combustion Engines” GB Patent 191506821 by Maurice Tips (application 8 May 1914)
– “Rotary Valve” US Patent 1,286,149 by Maurice A. Tips (granted 26 November 1918)
– “Internal Combustion Engine” US Patent 1,306,035 by Maurice A. Tips (granted 10 June 1919)
– “Valve-Operating Mechanism” US Patent 1,306,036 by Maurice A. Tips (granted 10 June 1919)
– “Internal Combustion Engine” US Patent 2,203,449 by Maurice Tips (granted 4 June 1940)
– “The Tips 480 H.P. Aero Motor” Aerial Age Weekly (17 March 1919)
Airplane Engine Encyclopedia by Glenn Angle (1921)
http://www.vieillestiges.be/fr/rememberbook/contents/42