Category Archives: Aircraft Engines

Napier-Sabre-VA-front

Napier H-24 Sabre Aircraft Engine

By William Pearce

Aircraft engine designer Frank Bernard Halford believed that an engine using a multitude of small cylinders running at a relatively high rpm would be smaller, lighter, and just as powerful as an engine with fewer, large cylinders running at a lower rpm. Halford was contracted by the British engineering firm D. Napier & Son (Napier) in 1928 and built the Rapier I (E93) in 1929 and the Dagger I (E98) in 1933. Both of these air-cooled engines had a vertical H configuration, with the Rapier having 16-cylinders and the Dagger having 24-cylinders. Ultimately, the 539 cu in (8.83 L) Rapier VI (possibly E106) produced 395 hp (295 kW) at 4,000 rpm in 1936, and the 1,027 cu in (16.84 L) Dagger VIII (E110) produced 1,000 hp (746 kw) at 4,200 rpm in 1938.

Napier-Sabre-VA-front

The Napier Sabre’s block-like exterior hid the engine’s complicated internals of 24-cylinders, two crankshafts, sleeve-valves, and numerous drives. The Sabre VA seen here was the last variant to reach quantity production. (Napier/NPHT/IMechE image)

Back around 1930, Napier Chairman Montague Stanley Napier and the company’s Board of Directors sought to diversify into the diesel aircraft engine field. Montague Napier and Bill Nowlan laid out the design for a liquid-cooled, vertical H, 24-cylinder diesel engine that used sleeve valves. Given the Napier designation E101, the engine had a 5.0 in (127 mm) bore, a 4.75 in (121 mm) stroke, and a total displacement of 2,239 cu in (36.68 L). Montague Napier passed away on 22 January 1931, but Nowlan continued design work under the direction of George Shakespeare Wilkinson, Ronald Whitehair Vigers, and Ernest Chatterton. Wilkinson took out a patent for the sleeve drive (GB363850, application dated 7 January 1931), and Vigers took out patents for sealing rings on a plug-type cylinder head (GB390610, application dated 15 February 1932) and sleeve-valves (GB408768, application dated 24 January 1933). It appears the E101 diesel was abandoned around 1933. However, two- and six-cylinder test engines had been built to test the sleeve-drive mechanism and prove the validity of the entire design.

In 1935, Halford joined Napier’s Board of Directors, acting as the company’s Technical Director. Halford was disappointed that the Rapier and Dagger were not more successful. He decided to design a new, larger, 24-cylinder, H-configuration engine that would be capable of 2,000 hp (1,491 kW). The design for at least part of the new engine was based on the E101 diesel. As he had done with the Rapier, Halford showed his design to George Purvis Bulman, the Deputy Director of Engine Research and Development for the British Air Ministry. Bulman was aware that designers of fighter aircraft were interested in such an engine and was able to arrange financial support for Napier to develop the H-24 engine. Halford’s 2,000 hp (1,491 kW) engine was given the Napier designation E107 and became known as the Sabre.

Serious design work on the Sabre started in 1936. The spark-ignition engine had a similar layout to the E101 diesel—both being liquid-cooled H-24s with sleeve-valves and possessing the same bore and stroke. Liquid-cooling was selected to efficiently reject the heat that the compact 2,000 hp (1,491 kW) engine generated, and a mixture of 70 percent water and 30 percent ethylene-glycol would be used. The Air Ministry enabled the free flow of information between Napier, Halford, and Harry Ralph Ricardo—a British engine expert who had been researching sleeve-valve engines for quite some time. With the engine technology known in the early 1930s, a perception existed that the poppet-valve engine had reached its developmental peak. Sleeve-valves were seen as a way to extract more power out of internal combustion engines. The sleeve-valve offered large, unobstructed intake and exhaust ports, a definite advantage to achieve a full charge into the cylinder and complete scavenging of the exhaust when the engine is operating at high RPMs.

Napier-Sabre-II-Cutaway

A drawing of a Sabre II, which was the main production variant. Note the two-sided supercharger impeller and the location of the supercharger clutch at the rear of the engine. The design of these components was changed for the Sabre IV and later variants. All accessories are mounted neatly atop the engine. (AEHS image)

The layout of the engine was finalized as a horizontal H-24. The Napier Sabre had a two-piece aluminum crankcase that was split vertically on the engine’s centerline. Sandwiched between the crankcase halves was an upper and lower crankshaft, each secured by seven main bearings. The center main bearing was larger than the rest, which resulted in an increased distance between the third and fourth cylinders in each bank. The crankshafts were phased at 180 degrees, and a cylinder for each crankshaft fired simultaneously. The single-piece, six-throw crankshafts were identical, and both rotated counterclockwise when viewed from the rear of the engine. Fork-and-blade connecting rods were used, with the forked rods serving the three front-left and three rear-right cylinders of the upper banks and the three front-right and three rear-left cylinders of the lower banks.

A 21-tooth spur gear on the front of each crankshaft meshed with two compound reduction gears, each with 31 teeth. A 17-tooth helical gear on the opposite side of each of the four compound reduction gears drove the 42-tooth propeller shaft counterclockwise. The drive setup created a double gear reduction, with the compound reduction gears operating at .6774 times crankshaft speed and the propeller shaft operating at .4048 times the speed of the compound reduction gears. The final gear reduction of the propeller shaft was .2742 crankshaft speed. A balance beam was mounted to the front of the two upper and the two lower compound reduction gears. A volute spring acted on each side of the beam to equally balance the tooth loading of the helical reduction gears on the propeller shaft. The forward ends of the compound reduction gears were supported by a gear carrier plate that was sandwiched between the crankshaft and the propeller shaft housing. The propeller shaft, balance beams, and volute springs were secured by the propeller shaft housing that bolted to the front of the engine.

Napier-Sabre-Sleeve-Drive-Cutaway

Sectional view through a Sabre cylinder block showing the upper and lower cylinders paired by the sleeve-valve drive. Intake and exhaust passageways were cast into the cylinder block, and coolant flowed through the hollow cylinder head. Note that the sleeve extends quite a distance between the cylinder head and cylinder wall. Also note the supercharger torsion bar extending through the hollow sleeve-valve drive shaft. (AEHS image)

Attached to each side of the crankcase was a one-piece, aluminum cylinder block that consisted of an upper and a lower cylinder bank, each with six cylinders. With the exception of a few installed studs, the left and right cylinder blocks were interchangeable. A two-piece sleeve-valve drive shaft was mounted between each cylinder block and the crankcase, and it ran between the upper and lower cylinder banks. Each sleeve-valve drive shaft was driven at crankshaft speed through a layshaft by an upper compound reduction gear. The left and right sleeve-valve drive shafts each had six worm gears with 11 teeth, and each worm gear drove the sleeves for an upper and a lower cylinder pair via a 22-tooth worm wheel made from bronze. This setup enabled the sleeves to operate at half crankshaft speed (and half the speed of the sleeve-valve drive shaft). The worm wheels and their separate housings were mounted to the inner sides of the cylinder blocks. Each worm wheel had an upper and lower sleeve crank, which were phased at 180 degrees. Each sleeve crank drove a sleeve via a ball joint mounted on a lug on the outer bottom of the sleeve. The rotational movement of the sleeve crank caused the sleeve to reciprocate and oscillate in the cylinder bore. In addition, when the sleeve for the upper cylinder was rotating clockwise, the sleeve for the paired lower cylinder rotated counterclockwise. Due to the opposite rotation, the sleeves for the upper and lower cylinder banks had different (mirrored) port shapes. Each sleeve-valve drive shaft was supported by 14 bearings, with each of the six worm wheel housings incorporating two bearings.

Each sleeve-valve drive shaft was hollow and had a supercharger torsion bar running through its center. The two supercharger torsion bars acted on a compound supercharger gear at the rear of the engine. Via a fluid-actuated clutch, the two-speed supercharger was driven at 4.48 times crankshaft speed in low gear (often called moderate supercharging, MS) and 6.62 times crankshaft speed in high gear (often called full supercharging, FS). The supercharger’s centrifugal impeller was double-sided. Air was drawn in through a four-barrel updraft SU (Skinner’s Union) suction carburetor and fed into the impeller. The air and fuel mixture was distributed from the supercharger housing via one of four outlets to a cast aluminum manifold that ran along the outer side of each cylinder bank.

When ports in the sleeve-valve aligned with three intake ports cast into the cylinder, the air and fuel mixture was admitted into the cylinder. As the sleeve rotated and ascended, the ports closed. Two spark plugs mounted parallel to one another in the cylinder head ignited the mixture, initiating the power stroke. As the sleeve rotated back and descended, the cylinder’s two exhaust ports were uncovered to allow the gasses to escape between the upper and lower cylinder banks. The sleeve’s stroke was approximately 2.5 in (64 mm), and its full rotation was approximately 56 degrees (its rotary movement being approximately 28 degrees back and forth from center). Each sleeve had only four ports, one of which was used for both intake and exhaust. Valve timing had the intake ports opening 40 degrees before top dead center and closing 65 degrees after bottom dead center. The exhaust ports opened 65 degrees before bottom dead center and closed 40 degrees after top dead center. Intake and exhaust ports were simultaneously partially uncovered for 80 degrees of crankshaft rotation—the last 40 degrees of the exhaust stroke and the first 40 degrees of the intake stroke. Twelve exhaust ports were located in a single line on each side of the engine, and each ejector exhaust stack served two ports—one for an upper cylinder and one for a lower cylinder.

Napier-Sabre-parts

A Sabre engine being assembled. In the foreground are the individual cylinder heads with their sealing rings. In the row above the heads is a long, slim shaft that is the supercharger torsion bar. It passes through the two-piece sleeve-valve drive shaft. Further right are six sleeve-valve cranks, followed by their housings, and a set of 12 sleeves. The crank end of the sleeve is up, and note the helical grooves for oil control. Next is a row of pistons sitting inverted, each with rings and a piston pin. On the next row is a crankshaft being worked on and a set of six fork-and-blade connecting rods. Further to the right is another set of connecting rods that are already attached to the other crankshaft (out of frame). The lady furthest from the camera is working on the four compound reduction gears that will take power from the two crankshafts and deliver it to the propeller shaft, which is being held in a wooden fixture in front of her. On the far left, behind the ladies, is a Sabre cylinder block with numerous studs to attach the cylinder bank. Next is an upper accessory housing with some accessories attached. Last is a lower accessory housing with fuel, water (both external), and oil (internal) pumps.

The forged aluminum pistons were rather short with a minimal skirt, which was required for the engine’s relatively short stroke, use of sleeve-valves, and narrow width. Each flat-top piston had two compression rings above the piston pin, with one oil scraper ring below. The top ring was later tapered to prevent the buildup of carbon. The piston operated directly in the sleeve-valve, which was .09375 in (2.4 mm) thick and made from forged chrome-molybdenum steel. When the piston was at the bottom of its stroke, it was almost completely removed from the cylinder and supported only by the sleeve. The sleeves had a hardened belt on their inner diameter at the top of the piston stroke. Helical grooves inside the lower part of the sleeve helped prevent excessive oil accumulation on the sleeve walls. Oil was controlled further by an oil scraper fitted at the bottom of the sleeve between its outer diameter and the cylinder. The top of each cylinder was sealed by a cast aluminum cylinder head. The cylinder head acted as a plug atop the cylinder and was sealed against the sleeve by a compression ring. The top of the sleeve extended between the cylinder head and the cylinder wall. The cylinder head incorporated coolant passages that communicated with passages in the cylinder block. The engine had a compression ratio of 7.0 to 1.

The upper and lower crankshafts also respectively drove upper and lower auxiliary drive shafts. These auxiliary drive shafts were contained in their own separate housings which were respectively attached to the upper and lower sides of the assembled engine. The upper auxiliary drive shaft powered a vacuum pump, the propeller governor, two distributors, two magnetos, a generator, an air compressor, a hydraulic pump, and an oil pump for the supercharger. All of this equipment was mounted as compactly as possible to the top of the engine. The lower auxiliary drive shaft powered left and right coolant pumps, a fuel pump, and various oil pumps. The coolant and fuel pumps were mounted below the engine, while the oil pumps were internal. The coolant pumps provided a combined flow of 367 US gpm (306 Imp gpm / 1,389 L/min). Also mounted atop the engine and geared to the rear of the upper crankshaft was the Coffman combustion starter unit. The starter had a five-cartridge capacity.

The upper and lower cylinders were numbered 1–12, starting from the left rear and proceeding clockwise to the right rear. With the simultaneous firing of a cylinder for each crankshaft, the engine’s firing order was Top 1/Bottom 6, T9/B10, T5/B2, T12/B7, T3/B4, T8/B11, T6/B1, T10/B9, T2/B5, T7/B12, T4/B3, and T11/B8. Four mounting pads on the underside of the engine attached it to the support structure in the aircraft. The basic design of the Sabre enabled easy access for routine maintenance. Once the aircraft’s cowling was removed, crews had unobstructed access to all of the spark plugs on the sides of the engine and all accessories mounted atop the engine.

Napier-Sabre-IIB-Service-Typhoon-IB

A Sabre IIB being pulled from a Typhoon IB. Note the coolant header tank at the front of the engine, the accessories packaged atop the engine, the two-into-one exhaust stacks, and the hydraulic supercharger clutch at the rear of the engine. The cylinder housing for the five-cartridge Coffman starter can be seen above the supercharger.

The Napier Sabre I (E107) engine had a 5.0 in (127 mm) bore and a 4.75 in (121 mm) stroke. With a bore diameter greater than the stroke length, the Sabre was an over-square engine. Each cylinder displaced 93.2 cu in (1.53 L), and the engine’s total displacement was 2,239 cu in (36.68 L). At 3,700 rpm, the Sabre I produced 2,050 hp (1,529 kW) at 2,500 ft (762 m) with 7 psi (.48 bar) of boost and 1,870 hp (1,394 kW) at 14,500 ft (4,420 m) with 8 psi (.55 bar) of boost. The engine was 81.1 in (2.06 m) long, 40.0 in (1.02 m) wide, and 51.1 in (1.30 m) tall. The Sabre I weighed 2,360 lb (5,203 kg).

Sabre development at Napier’s works in Acton, England progressed quickly, and single-, twin-, and six-cylinder test engines were all running by the end of 1936. The first of four 24-cylinder prototype engines was run on 23 November 1937, and the Air Ministry ordered six additional test engines by December. In January 1938, the Sabre passed initial acceptance tests with a rating of 1,350 hp (1,007 kW), and on 3 March, the Air Ministry ordered two Sabre-powered Hawker Typhoon fighter prototypes. Also in March, the engine passed a 50-hour test that included a peak output of 2,050 hp (1,529 kW). All ordered engines were completed by the end of 1938 and were running on test stands by February 1939. While testing continued, the Sabre I was first flown in a Fairey Battle on 31 May 1939, piloted by Chris Staniland. As installed in the Battle, the Sabre had a single exhaust manifold on each side of the engine that collected the exhaust from all 12 cylinders.

In July 1939, the Air Ministry ordered 100 production engines and material for another 100 engines. In August, the Sabre passed a type test with a rating of 1,800 hp (1,342 kW). On 8 October 1939, an order for 250 Typhoons was placed, and on 24 February 1940, the Typhoon prototype (P5212) made its first flight, piloted by Philip G. Lucas. Three four-into-one exhaust manifolds were originally installed on each side of the Typhoon’s Sabre, but these were quickly replaced by what would become the standard two-into-one exhaust stacks. In March 1940, Napier created its Flight Development Establishment at Luton, England for flight testing the Sabre and developing installations for the engine. By all accounts, the Sabre continued to perform well, although some vibration issues were experienced with the Typhoon. In June 1940, the engine passed a 100-hour type test with a maximum output of 2,050 hp (1,529 kW) at 3,700 rpm, making the Sabre the first engine to have a service rating over 2,000 hp (1,491 kW).

Fairey-Battle-Napier-Sabre-I-and-Folland-Fo108-Sabre-II

The installation of Sabre engines on the Fairly Battle (top) and Folland F.108 (bottom) were well executed. Two Battles and three Fo.108s were employed to test the Sabre, and these aircraft provided valuable information about the engine.

Since mid-1938, a plan was underway to use an uprated Sabre engine in a specially-designed aircraft for a speed record attempt. The special engine produced 2,450 hp (1,827 kW) at 3,800 rpm with 9.2 psi (.63 bar) of boost and was first run on 6 December 1939. Installed in the Napier-Heston Racer, the combination first flew on 12 June 1940, piloted by G. L. G. Richmond. Difficulties with the new engine and airframe resulted in a hard landing that damaged the aircraft beyond repair. The Sabre engine installed in the Napier-Heston Racer featured two six-into-one exhaust manifolds on each side of the engine.

Around November 1939, the Air Ministry ordered 500 examples of the Typhoon. This order was temporarily suspended due to the Battle of Britain but was reinstated in October 1940. At that time, Napier began work to produce additional Sabre engines for the Typhoon order, but production was still a very limited affair. These early engines were limited to 25 hours before being removed for major inspection. The first production Typhoon IA (R7576) flew on 27 May 1941, with other aircraft soon to follow. Nearly all Sabre I engines were used in Typhoon IAs.

Hawker-Typhoon-IB-Napier-Sabre

With its 14 ft (4.27 m) three-blade propeller turning, this early Typhoon IB warms up its Sabre engine for a flight. The Typhoon IB had four 20 mm cannons, while the earlier IA had 12 .303 machine guns. At the center of the radiator is the open carburetor intake, which was later covered by a momentum air filter. Note the underwing identification/invasion stripes

Napier continued to develop the engine as the Sabre II, and the first production Sabre II was completed in January 1941. The Sabre II produced 2,090 hp (1,559 kW) at 3,700 rpm at 4,000 ft (1,219 m) with 7 psi (.48 bar) of boost and 1,735 hp (1,294 kW) at 17,000 ft (5,182 m). Sabre II engines were first installed in Typhoons on a trial basis in June 1941, and the engine was cleared for 50 hours between major inspections around this time. The Sabre II would ultimately replace the Sabre I in Typhoon IAs and IBs, and the Sabre I was phased out around October 1941. In addition to the Typhoon, the Sabre II also powered the Martin-Baker MB3 fighter, which made its first flight on 31 August 1942, and the Hawker Tempest V fighter prototype (HM595), which made its first flight on 2 September 1942, piloted by Lucas. The Tempest V was a new aircraft developed from the Typhoon.

The Folland Fo.108 was built to Air Ministry Specification 43/37 calling for an engine testbed aircraft. Three of the fixed-gear monoplanes were delivered to Napier’s Flight Development Establishment at Luton in 1941 and were initially fitted with Sabre II engines. The aircraft were to serve Napier for several years testing various versions of the Sabre engine. One of the Sabre-powered aircraft was lost on 14 September 1944.

The Sabre III was similar to the II but was intended for higher engine speeds. The Sabre III was selected for the Blackburn B-37 Firebrand carrier strike aircraft. At 4,000 rpm, the Sabre III had a takeoff rating of 2,250 hp (1,678 kW) and military ratings of 2,310 hp (1,723 kW) at 2,500 ft (762 m) with 9 psi (.62 bar) of boost and 1,920 hp (1,432 kW) at 16,000 ft (4,877 m). At 3,500 rpm, the engine had a normal rating of 1,890 hp (1,409 kW) at 5,000 ft (1,524 m) and 1,630 hp (1,215 kW) at 16,500 ft (5,029 m). The Firebrand (DD804) was first flown on 27 February 1942. However, with production priority going to the Typhoon, the Ministry of Aircraft Production decided to reengine the Firebrand with the Bristol Centaurus sleeve-valve radial engine. Only around 24 of the Sabre-powered versions were built.

Blackburn-Firebrand-I-Napier-Sabre

The Blackburn Firebrand, was to be powered by the Sabre III. However, Sabre engine production was allocated to the Typhoon, and the Firebrand was reengined with the Bristol Centaurus. Pictured is DD815, the third Firebrand Mk I prototype.

With production engines in production airframes, Sabre reliability issues were soon encountered. After running for a few hours, sometimes not even passing initial tests, Sabre engines began to experience excessive oil consumption and sleeve-valves cracking, breaking, seizing or otherwise failing. Examinations of numerous engines found sleeves distorted or damaged. Since the Sabre’s main application was the Typhoon, it was that aircraft that suffered the most. To make matters worse, the Typhoon was experiencing its own issues with in-flight structural failures. Other aircraft suffered as well. On 12 September 1942, the Sabre II engine in the MB3 failed; the subsequent crash landing destroyed the prototype and killed the pilot, Valentine H. Baker.

The Sabre had performed admirably during testing, but the production engines were encountering issues at an alarming rate. The early engines were built and assembled by hand. Parts with small variances were matched to obtain the desired clearances and operation. This was a luxury that could not be afforded once the engine was mass produced. The sleeves were found to be .008 to .010 in (.203 to .254 mm) out of round. This caused the cascading failure of other components as the engine was operated. In addition, the piston was forming a ridge in the sleeve, leading to excessive wear and the eventual failure of the piston rings, piston, or sleeve.

Carbon build-up was causing issues with the lubrication system. While in flight, aeration of the oil resulted in a heavy mist of oil flowing from the breather and coating the cockpit, obscuring the pilot’s view. The Coffman cartridge starter caused other issues; its sudden jolt when starting the engine occasionally damaged sleeve-drive components, setting up their inevitable failure. Part of the starting issue was that the sudden rotation of the engine with a rich mixture washed away the oil film between the pistons and sleeves. Finally, service crews were misadjusting the boost controller, creating an over-boost situation that led to detonation in the cylinders and damaged engines.

Hawker-Tempest-I-Napier-Sabre-IV

The Tempest I was powered by the Sabre IV engine. At 472 mph (760 km/h), the aircraft was the fastest of the Tempest line. The Tempest I was rather elegant without the large chin radiator, and the wing radiators were similar to those that would be used on the Sabre VII-powered Fury.

Napier worked diligently to resolve the issues. A detergent-type oil was used to prevent the build up of carbon on internal components. A centrifugal oil separator was designed to deaerate the oil and was fitted to Sabre engines already installed in Typhoons. Changes were made to the starter drive, and a priming mixture of 70 percent fuel and 30 percent oil was utilized to maintain an oil film in the cylinders. The boost controllers were factory sealed, and severe repercussions were put in place for their unauthorized tampering.

The issues with sleeve distortion were the most serious and vexing. Methods were devised to measure the sleeve with special instruments via the spark plug hole. While this helped to prevent failures, it also caused the withdrawal of low-time engines as sleeves became distorted. To fix the issue, different sleeve materials were tried along with different processes of manufacture, but nothing seemed to work. The supply of Sabre engines fell behind the production of Typhoon aircraft, and engineless airframes sat useless at manufacturing facilities. The engine shortage was so severe that a good Sabre would be installed in a Typhoon to ferry the aircraft to a dispersal facility. The engine would then be removed, returned to the aircraft factory, and installed in another Typhoon to shuttle that aircraft away, repeating the process over and over.

In October 1941, Francis Rodwell ‘Rod’ Banks replaced Bulman, who was, at the time, the Director of Engine Production for the Ministry of Aircraft Production. Bulman was back in Engine Research and Development and continued to work with Halford and Napier to resolve issues with the Sabre. Banks suggested that Napier work with the Bristol Engine Company on a suitable sleeve for the Sabre. Bristol had been manufacturing radial sleeve-valve engines since 1932, and their Taurus engine had the same 5.0 in (127 mm) bore as the Sabre. Napier was apparently not interested in pursuing that possible solution, so Banks went directly to Bristol and had them machine a pair of sleeves for use in the Sabre two-cylinder test engine. The Bristol sleeves were made from centrifugally cast austenitic steel comprised of nickel, chromium, and tungsten. The sleeve was nitrided to increase its hardness and was not more than .0002 in (.005 mm) out of round. The Sabre two-cylinder test engine with the Bristol sleeves ran 120 hours without issue. Banks then had Bristol produce 48 sleeves for two complete 24-cylinder Sabre test engines. Bristol became unhappy with sharing its components and processes with a competitor, and Napier was still hesitant to utilize Bristol’s materials and techniques.

Napier-Sabre-VA-rear

The Sabre VA had a one-sided supercharger impeller, a relocated supercharger clutch, and a two-barrel injection carburetor. These refinements were introduced on the Sabre IV. The Sabre VA powered the Tempest VI. (Napier/NPHT/IMechE image)

With the Air Ministry’s push, Napier was taken over by English Electric in December 1942. The new management was happy to accept any assistance from Bristol, and Bristol was now more willing than ever to lend support. A lack of support from the Napier board of directors had caused Halford to give a three-month notice of resignation, and he left in early 1943 to focus on turbojet engines at the de Havilland Engine Company. However, Halford continued consulting work on the Sabre for a time. Before his departure from Napier, Halford’s Sabre designs had progressed up to the Sabre V. Ernest Chatterton took over Sabre development after Halford’s departure. Through all this, Bulman continued to work with Napier, but the Ministry of Aircraft Production handed all responsibility for the Sabre engine to Banks in early 1943. To get engine production up to speed, Sundstrand centerless grinders made in the United States and destined for a Pratt & Whitney factory producing R-2800 C engines were rerouted to Napier’s Sabre production facility in Liverpool. While it is not entirely clear how Banks felt at the time, he later wondered what would have become of the Fairey Monarch H-24 engine if the Air Ministry and the Ministry of Aircraft Production had encouraged its development with the same financial and technological resources supplied for the Sabre.

In the spring of 1943, some 1,250 engines had accumulated a total of 12,000 hours of testing and 40,000 hours of service use, and the Sabre’s service life was extended from 25 hours to 250 hours between major inspections. With Sabre reliability issues resolved and production resuming, development of the engine continued. The Sabre IV incorporated a two-barrel Hobson-RAE injection carburetor and a revised supercharger with a single-sided impeller. The supercharger clutches were updated and relocated from the extreme rear of the supercharger to between the supercharger and the engine. Revised gears turned the impeller at 4.68 times crankshaft speed in low gear and 5.83 times crankshaft speed in high gear. The Sabre IV produced 2,240 hp (1,670kW) at 4,000 rpm at 8,000 ft (2,438 m) with 9 psi (.62 bar) of boost. The engine was selected for the Tempest I, the prototype of which was initially ordered on 18 November 1941, followed by an order for 400 production aircraft in August 1942. The Tempest I featured a streamlined nose and its radiator and oil cooler were installed in the wing’s leading edge. The prototype Tempest I (HM599) was first flown on 24 February 1943, piloted by Lucas, and would go on to record a speed of 472 mph (760 km/h) at 18,000 ft (5,486 m) in September 1943. However, delays and development issues with the Sabre IV engine led to the Tempest I order being converted to Sabre IIA and IIB-powered Tempest Vs.

The Sabre IIA (E115) was a refinement of the Sabre II and had been developed in mid-1943. The engine had a modified oil system and used dynamically-balanced crankshafts. The Sabre IIA had a takeoff rating of 1,995 hp (1,488 kW) at 3,750 rpm with 7 psi (.48 bar) of boost. At 3,750 rpm and 9 psi (.62 bar) of boost, the engine had a military rating of 2,235 hp (1,667 kW) at 2,500 ft (762 m) and 1,880 hp (1,402 m) at 15,250 ft (4,648 m). At 3,700 rpm and 7 psi (.48 bar) of boost, the engine had a normal rating of 2,065 hp (1,540 kW) at 4,750 ft (1,448 m) and 1,735 hp (1,294 kW) at 17,000 ft (5,182 m). Fuel consumption at cruise power was .46 lb/hp/hr (280 g/kW/h). Starting around August 1943, Sabre IIA engines were incorporated into production Typhoon IB and Tempest V Series I aircraft.

Napier-Sabre-VA-cutaway

Cutaway drawing of a Sabre VA illustrating the engine’s propeller reduction gears and sleeve-valve drive. Note the upper and lower accessory drives, the slight fore-and-aft angling of the spark plugs, and the single-sided supercharger impeller. (Napier/NPHT/IMechE images)

In 1944, prototypes of the Sabre IIB (E107A) became available. Compared to the Sabre IIA, the IIB used a different carburetor, had a modified boost controller, and was cleared for additional engine speed. The Sabre IIB had a takeoff rating of 2,010 hp (1,499 kW) at 3,850 rpm with 7 psi (.48 bar) of boost. At 3,850 rpm with 11 psi (.76 bar) of boost, the engine had a military rating of 2,400 hp (1,790 kW) at sea level, 2,615 hp (1,950 kW) at 2,500 ft (762 m), and 2,045 hp (1,525 kW) at 13,750 ft (4,191 m). The Sabre IIB had the same normal rating as the IIA. The engine was used in later Typhoon IBs and was the main Sabre version to power the Tempest V Series II.

The Sabre IIC (E107B) was a similar to the IIB but with new supercharger gears. The impeller turned at 4.73 times crankshaft speed in low gear and at 6.26 times crankshaft speed in high gear. The engine had a takeoff rating of 2,065 hp (1,540 kW) at 3,850 rpm. At the same engine speed and with 11 psi (.76 bar) of boost, the military power rating was 2,400 hp (1,790 kW) at 2,000 ft (610 m) and 2,045 hp (1,525 kW) at 13,750 ft (4,191 m). The Sabre IIC was used in some late production examples of the Tempest V, including those converted as target tugs in 1948.

The Sabre V (E107C) was developed from the IV with an updated carburetor. Linkages were incorporated to allow one lever to control the engine’s throttle and the propeller’s pitch along with automatic boost and mixture control, but this system could be overridden by the pilot. The spark plugs were repositioned, although it is not clear if this change was made on the Sabre V or the Sabre VA engine. Rather than being parallel, as in earlier Sabre engines, the electrode of the front spark plug was angled forward, and the electrode of the rear spark plug was angled back. The engine produced 2,420 hp (1,805 kW) at 3,750 rpm at 4,250 ft (1,295 m) with 15 psi (1.0 bar) of boost. The Sabre V was tested in the Tempest I, and the combination was first flown on 8 February 1944 by Bill Humble. On 12 February, an order for 700 Sabre V-powered Tempest Is was issued. This order was later reduced to 300 examples, and then converted to the Sabre V-powered Tempest VI in May. The prototype Tempest VI (HM595 again) made its first flight on 9 May 1944, piloted by Humble. Cooling the more powerful engine in warmer climates required modifications to be incorporated into the Tempest VI, including a larger chin radiator and a secondary oil cooler in the wing. Carburetor inlets were also relocated to the wing’s leading edge. Otherwise, the aircraft was similar to the Tempest V.

Hawker-Tempest-V-and-VI-Napier-Sabre-IIA-and-VA

A Tempest V Series I (top) and Tempest VI (bottom). The Tempest V Series I had Hispano Mk II cannons with long barrels that protruded from the wing’s leading edge. The Tempest V Series II and other Tempests had Hispano Mk V cannons with short barrels. The Sabre VA-powered Tempest VI (bottom) has an enlarged chin radiator, an oil cooler in the wing, and carburetor inlets in both wing roots.

The Sabre VA was essentially the production version of the Sabre V. The Sabre VA had a takeoff rating of 2,300 hp (1,715 kW) at 3,850 rpm with 12 psi (.83 bar) of boost. The engine’s military rating at 3,850 rpm with 15 psi (1.0 bar) of boost was 2,600 hp (1,939 kW) at 2,500 ft (762 m) and 2,300 hp (1,715 kW) at 13,750 ft (4,191 m). At 3,650 rpm, the Sabre VA had a normal rating of 2,165 hp (1,614 kW) at 6,750 ft (2,057 m) and 1,930 hp (1,439 kW) at 18,000 ft (5,486 m). Cruise power at 3,250 rpm was 1,715 hp (1,279 kW) at 6,750 ft (2,057 m) and 1,565 hp (1,167 kW) at 14,250 ft (4,343 m). Fuel consumption at cruise power was .50 lb/hp/hr (304 g/kW/h). The engine was 82.2 in (2.10 m) long, 40.0 in (1.02 m) wide, and 46.0 in (1.17 m) tall. The Sabre VA weighed 2,500 lb (1,134 kg). Starting around March 1946, the engine was the powerplant for production Tempest VI aircraft.

The Sabre VI was the same engine as the Sabre VA, but it incorporated an annular nose radiator and provisions for a cooling fan, all packaged in a tight-fitting cowling. The cooling fan rotated clockwise, the opposite direction from the propeller. The intent of the engine and cooling system combination was to produce a complete low-drag installation package that would cool the engine sufficiently for use in tropical climates. The radiator incorporated cooling elements for both engine coolant and oil. Napier and Hawker experimented with annular radiators using various Sabre IIB engines installed on a Typhoon IB (R8694) and a Tempest V (EJ518). In 1944, the Sabre VI with an annular radiator was test flown on a Tempest V (NV768). Numerous changes to the annular radiator and its cowling eventually led to the development of a ducted spinner, which was installed on NV768. The aircraft continued to test annular radiators through 1948. While the annular radiator added 180 lb (82 kg), it decreased drag by eight percent and improved the Tempest’s top speed by 12 mph (19 km/h). Two Sabre VI engines, each with an annular radiator and a cooling fan, were installed on a Vickers Warwick C Mk III (HG248) twin-engine transport. With the Sabre engines, the Warwick’s top speed was limited to 300 mph (483 km/h) due to its fabric covering. This was still about 75 mph (121 km/h) faster than the aircraft’s original design speed. Most of the annular radiator testing was conducted at Napier’s Flight Development Establishment at Luton. While some of the ducted spinner research was applied to the Napier Naiad turboprop, none of the work was applied to production piston engines.

Hawker-Tempest-V-Napier-Sabre-IIB-ducted-spinner

The Sabre VI incorporated an annular radiator and provisions for an engine-driven cooling fan. Tempest V NV768 was used to test a number of different spinner and annular radiator cowling configurations with the Sabre VI. The aircraft is seen here with a large ducted spinner. The configuration slightly improved NV768’s performance over that of a standard Tempest. (Napier/NPHT/IMechE image)

The Sabre VII carried the Napier designation E121 and was essentially a VA engine strengthened to endure higher outputs. The engine was fitted with water/methanol (anti-detonant) injection that sprayed into the supercharger via an annular manifold. The mixture used was 40 percent water and 60 percent methanol. The water/methanol injection lowered the engine’s tendency toward detonation and allowed for more power to be produced. The supercharger housing was reworked for the water/methanol injection, and the cylinder heads were modified to accommodate two compression rings. Individual ejector exhaust stacks were fitted, replacing the two-into-one stacks previously used on most Sabre engines.

Initially, the Sabre VII had a takeoff rating of 3,000 hp (2,237 kW) at 3,850 rpm with water/methanol injection and 17.25 psi (1.19 bar) of boost. This was later increased to 3,500 hp (2,610 kW) at the same rpm with 20 psi (1.38 bar) of boost. The engine’s military rating at 3,850 rpm with 17.25 psi (1.19 bar) of boost and water/methanol injection was 3,055 hp (2,278 kW) at 2,500 ft (762 m) and 2,820 hp (2,103 kW) at 12,500 ft (3,810 m). The water/methanol injection flow rate was 76 US gph (66 Imp gph / 300 L/min) at takeoff, 78 US gph (65 Imp gph / 295 L/min) at military power in low supercharger, and 122 US gph (102 Imp gph / 464 L/min) at military power with high supercharger. The water/methanol flow rates corresponded to 30 percent of the fuel flow at low supercharger and 45 percent of the fuel flow at high supercharger. The Sabre VII’s fuel flow was 284 US gph (235 Imp gph / 1,068 L/min) at takeoff, 287 US gph (239 Imp gph / 1,087 L/min) at military power in low supercharger, and 289 US gph (241 Imp gph / 1,096 L/min) at military power with high supercharger. At 3,700 rpm and 10.5 psi (.73 bar) of boost, the Sabre VII had a normal rating of 2,235 hp (1,667 kW) at 8,500 ft (2,591 m) and 1,975 hp (1,473 kW) at 18,250 ft (5,563 m). Cruise power at 3,250 rpm was 1,750 hp (1,305 kW) at 8,500 ft (2,591 m) for a fuel consumption of .45 lb/hp/hr (274 g/kW/h), and 1,600 hp (1,193 kW) at 17,000 ft (5,182 m) for a fuel consumption of .51 lb/hp/hr (310 g/kW/h). The engine was 83.0 in (2.11 m) long, 40.0 in (1.02 m) wide, and 47.2 in (1.20 m) tall. The Sabre VII weighed 2,540 lb (1,152 kg). Some sources state that a Sabre VII engine achieved an output of 4,000 hp (2,983 kW) and was run at 3,750 hp (2,796 kW) for a prolonged period without issues during testing.

Napier-Sabre-VI-Vickers-Warwick-CIII

A Vickers Warwick C Mk III (HG248) was used to test the installation of the Sabre VI engine with an annular radiator and an engine-driven cooling fan. Note that the fan rotates in the opposite direction from the propeller and that the lower cowling folds down level to be used as a work platform. The rear four exhaust ejectors were replaced with elongated stacks to prevent excessive heat build-up on the wing’s leading edge. (Napier/NPHT/IMechE image)

The Sabre VII was intended to power the Hawker Fury Mk I, of which 200 were ordered in August 1944. Shifting priorities at the end of the war all but cancelled the aircraft, and only two prototypes were built. The first prototype (LA610) made its initial Sabre VII-powered flight on 3 April 1946. This aircraft would go on to record a speed of 483 mph (777 km/h) at 18,500 ft (5,639 m) and 422 mph (679 km/h) at sea level. The Sabre VII was also test-flown on a Tempest V or VI in mid-1946, but additional details have not been found. This aircraft had the larger radiator and wing root carburetor inlets of the Tempest VI, but it did not have the additional oil cooler in the wing.

The Sabre VIII carried the Napier designation E122 and was based on the Sabre VII. The engine incorporated contra-rotating propellers and a two-stage supercharger. Four aftercoolers were to be installed—one on each induction runner leading from the supercharger housing to the intake manifold attached to the cylinder bank. Although some sources say the Sabre VIII was built, it appears to have remained an unbuilt project. The engine was forecasted to have a military rating of 3,350 hp (2,498 kW) and be capable of 25 psi (1.72 bar) of boost.

Napier-Sabre-VII-rear

A Sabre VII with its revised supercharger housing that accommodated water/methanol injection. The injection controller is mounted just above the supercharger housing. The Sabre VII ultimately produced 3,500 hp (2,610 kW) at 3,850 rpm with 20 psi (1.38 bar) of boost and was installed in the Hawker Fury Mk 1 prototype. (Napier/NPHT/IMechE image)

Production of the Sabre was halted shortly after the end of World War II with approximately 5,000 engines produced. Starting in October 1939, Napier worked to establish a shadow factory in Liverpool to produce Sabre engines. The first engine, a Sabre II, was completed at this factory in February 1942. The Liverpool site manufactured around 3,500 II, IIA, IIB, and VA engines, with the remaining 1,500 engines, including all prototypes, coming from Napier’s Acton works. With Sabre development at an end, Napier focused on their next aircraft engine, the two-stroke diesel/turbine compounded Nomad.

A number of engine designs based on the Sabre were considered, but most stayed as projects, and none progressed beyond cylinder testing. The E109 of 1939 was half of a Sabre, with 12-cylinders and a single crankshaft. It would have displaced 1,119 cu in (18.34 L). The E113 of 1940 was a fuel-injected, two-stroke, uniflow, Sabre-type test engine intended for increased engine speed and boost. The design concept originated with Harry Ricardo, and a two-cylinder test engine was built in 1942. Reportedly, the test engine was so loud that people on the street had to cover their ears as they passed by Napier’s works in Acton. The E120 of 1942 was a 32-cylinder Sabre consisting of four banks of eight cylinders. It would have displaced 2,985 cu in (48.91 L). The E123 of 1943 was a complete 24-cylinder, fuel-injected, two-stroke Sabre based on the E113 test engine. It had a forecasted output of 4,000 hp (2,983 kW) but was never built.

Although the Sabre was proposed for many projects that never left the drawing board and powered a few prototypes, the engine’s main applications were the 109 Typhoon IAs, 3,208 Typhoon IBs, 801 Tempest Vs, and 142 Tempest VIs produced during World War II. After the initial production difficulties, which were quite severe, the engine served with distinction. The Sabre could be difficult to start, and it was advisable to use a remote heater to pre-heat the coolant and oil in cold temperatures. Sleeve trouble came back with Typhoons stationed around Normandy, France in the summer of 1944. Fine dust particles from the soil were getting into the engines and causing excessive sleeve wear. A momentum air filter developed by Napier cured the trouble. The filter was designed and test flown the same day of its original request, and all the Typhoons in France were fitted with a filter within a week. Production of the Sabre was an expensive affair, with each horsepower costing four to five times that of the Rolls-Royce Merlin. However, Typhoons and Tempests played an important role in attacking German forces on the ground and countering V-1 flying bombs. Around a dozen Sabre engines survive and are on display in museums or held in private collections. As of 2020, there are no running Sabre engines, but efforts are underway to create running examples to power Typhoon and Tempest aircraft under restoration.

Napier-Sabre-E122

General arrangement drawing of the unbuilt Sabre VIII (E122). The engine featured a two-stage supercharger and contra-rotating propellers. It was forecasted to produce 3,350 hp (2,498 kW).

Sources:
Major Piston Aero Engines of World War II by Victor Bingham (2001)
Allied Aircraft Piston Engines of World War II by Graham White (1995)
Aircraft Engines Volume Two by A. W. Judge (1947)
By Precision Into Power by Alan Vessey (2007)
An Account of Partnership – Industry, Government and the Aero Engine by George Bulman and edited by Mike Neale (2002)
I Kept no Diary by F. R. (Rod) Banks (1978)
Boxkite to Jet — the remarkable career of Frank B Halford by Douglas R Taylor (1999)
The Napier Way by Bryan ‘Bob’ Boyle (2000)
The Hawker Typhoon and Tempest by Francis K. Mason (1988)
Hawker Typhoon, Tempest and Sea Fury by Kev Darling (2003)
Tempest: Hawker’s Outstanding Piston-Engined Fighter by Tony Buttler (2011)
Hawker Aircraft since 1920 by Francis K. Mason (1991)
Blackburn Aircraft since 1909 by A. J. Jackson (1968/1989)
Aircraft Engines of the World 1945 by Paul H. Wilkinson (1945)
Aircraft Engines of the World 1946 by Paul H. Wilkinson (1946)
– “The Napier Sabre Engine Parts 1–3” by J. A. Oates, Aircraft Production Volume 6, Numbers 66–68 (April–June 1944) via The Aircraft Engine Historical Society
– “Napier Sabre II” by F. C. Sheffield, Flight (23 March 1944)
– “Napier Sabre VII” Flight (22 November 1945)
– “Napier Flight Development” Flight (25 July 1946)
Jane’s All the World’s Aircraft 1945/46 by Leonard Bridgman (1946)
Jane’s All the World’s Aircraft 1947 by Leonard Bridgman (1947)
Jane’s All the World’s Aircraft 1948 by Leonard Bridgman (1948)

Napier-Dagger-VIII-front

Napier H-24 Dagger Aircraft Engine

By William Pearce

In 1928, independent aircraft engine designer Frank Bernard Halford was contracted by D. Napier & Son (Napier) to design aircraft engines with a displacement between 404.09 and 718.37 cu in (6.62 and 11.77 L). Halford’s first designs for Napier were the H-16 Rapier (Napier designation E93) of 1929 followed by the inverted I-6 Javelin (Napier designation E97) of 1931.

Napier-Dagger-I-side

The Napier Dagger I air-cooled H-24 with its downdraft carburetor and propeller shaft in line with the engine’s centerline. “Napier Halford” can be seen on the upper camshaft housing. Note the two engine mounts on the side of the crankcase and third mount on the accessory housing. (Napier/NPHT/IMechE image)

Around 1932, Halford and Napier reached a new agreement, and the design of engines larger than the 718.37 cu in (11.77 L) limit were initiated. The first of these designs was a 24-cylinder development of the Rapier with an enlarged bore and elongated stroke. This engine was named the Dagger, and it carried the Napier designation E98. The engine was also called the Napier-Halford Dagger. Like the Rapier, the air-cooled Dagger was a high-revving aircraft engine with numerous small cylinders and minimal frontal area. Halford’s belief was that a smaller engine running at higher speeds would produce the same power as a larger engine running at slower speeds.

The Dagger had a vertical H configuration with four cylinder banks, each with six cylinders. The two-piece aluminum crankcase was split horizontally at its center. The two crankcase halves supported left and right crankshafts via seven main bearings each. An eighth crankshaft bearing was located in the gear reduction housing. Each one-piece, six-throw crankshaft served one vertical and one inverted bank of cylinders. The crankshafts were phased at 30 degrees with power strokes occurring sequentially between the two crankshafts. The connecting rods were of the fork-and-blade type, with the forked rods serving the upper front three cylinders on the left side of the engine and the upper rear three cylinders on the right side of the engine. Spur gears at the front of each crankshaft meshed with a larger gear mounted to the propeller shaft, which turned at .372 crankshaft speed. When viewed from the rear, both crankshafts rotated clockwise, and the propeller shaft rotated counterclockwise.

Napier-Dagger-II-NASM

A Dagger II engine preserved and in storage as part of the Smithsonian National Air and Space Museum. The engine appears complete with its upper and lower air ducts as well as the baffling around the cylinders. At one time, this particular Dagger II belonged to the US Navy. The engine data plate says “Halford-Napier Dagger.” (NASM image)

The individual cylinders were made from forged steel barrels with cast aluminum heads. The heads for each cylinder bank were first installed to a common camshaft housing and then drawn down on the cylinder barrels via four studs protruding from the crankcase around each cylinder opening. An aluminum sealing ring was sandwich between the cylinder head and barrel. The cylinders had a 7.75 to 1 compression ratio, and each cylinder had a single intake and a single sodium-cooled exhaust valve. The intake port was on the inner side of the cylinder, and the exhaust port was on the outer side. The valves for each cylinder bank were actuated via rockers and tappets by a single overhead camshaft. The self-adjusting hydraulic valve tappets were designed by Halford. Each camshaft was driven via a vertical shaft and bevel gears from the rear of the engine.

Each cylinder had one spark plug mounted on its outer side and another mounted on its inner side. The spark plugs were fired by two magnetos mounted to and driven from the gear reduction housing. An accessory drive case was mounted to the back of the engine. A shaft extending back from the propeller shaft powered the accessory drive case. Driven from the accessory case were the camshafts, supercharger, generator, oil and fuel pumps, and various accessories. The single-speed supercharger drew in air through a downdraft carburetor and compressed the air and fuel mixture with a centrifugal impeller. The air and fuel mixture exited the supercharger housing via upper and lower passageways in the crankcase. These passageways were located between the upper and lower cylinder banks, and each had six outlets. A T-shaped manifold that was attached to each induction passageway outlet delivered the air and fuel mixture to two cylinders, one on each bank.

Napier-Dagger-III-side

A Dagger III with individual exhaust stacks and many components chromed and polished to perfection for display purposes. Note the “Napier Halford” placard on the upper camshaft housing. (Napier/NPHT/IMechE image)

For engine cooling, air was ducted between the upper and lower cylinders. Baffles directed the air’s flow through the cylinders’ integral cooling fins and to the outer side of the cylinder banks. The cooling air exited via a cowl flap on each side of the aircraft and behind the engine. Two engine mounting pads were incorporated into the crankcase on each side of the engine. Two integral pads on each side of the rear accessory case were used together to form a third engine mount.

The Napier Dagger I (E98) had a 3.8125 in (96.8 mm) bore and a 3.75 in (95.3 mm) stroke. Each cylinder displaced 42.8 cu in (.70 L), and the Dagger’s total displacement was 1,027 cu in (16.84 L). The engine had a maximum output of 705 hp (526 kW) at 4,000 rpm at 12,000 ft (3,658 m). At 3,500 rpm, the Dagger I had a normal output of 630 hp (470 kW) at 10,000 ft (3,048 m) and produced 570 hp (425 kW) at sea level. The engine was 80 in (2.03 m) long, 22.5 in (.57 m) wide, and 45.125 (1.15 m) tall. The Dagger I weighed 1,280 lb (581 kg).

Napier-Dagger-III-front

Front view of a Dagger III illustrates the engine’s two 24-cylinder distributors mounted under the propeller shaft and the 300 ft (91 m) or so of ignition cables. Just visible between the upper cylinder banks is the T-shaped manifold delivering air to the first two cylinders. (Napier/NPHT/IMechE image)

As engine design was underway, a two-cylinder test engine representing a Dagger’s upper and lower cylinder pair was built and tested. A complete 24-cylinder engine followed and was first run around early 1933. The Dagger I was installed in a two-seat light bomber biplane Hawker Hart (K2434) to serve as a testbed for the engine. The Dagger-powered Hart made its first flight on 17 December 1933. The engine experienced vibration and reliability issues and was later replaced with a Dagger II.

Napier continued to develop the Dagger engine line. Dagger E104 was a test engine with its bore enlarged to 4 in (102 mm). This increased the engine’s displacement by 104 cu in (1.70 L) to 1,131 cu in (18.53 L). It appears the E104 was built up using components from a Dagger I, but the engine never entered production.

The Dagger II was a refined Dagger I with additional supercharging for higher altitudes. The engine had a maximum rating of 760 hp (567 kW) at 4,000 rpm at 12,250 ft (3,734 m) with 1.5 psi (.10 bar) of boost, a normal rating of 695 hp (518 kW) at 3,500 rpm at 10,000 ft (3,048 m) with 1.5 psi (.10 bar) of boost, and a takeoff rating of 710 hp (529 kW) at 3,500 rpm with 3.0 psi (.21 bar) of boost. Fuel consumption at cruise power was .420 lb/hp/hr (255 g/kW/h). The Dagger II weighed 1,305 lb (592 kg). The engine was first run around early 1934 and passed a 100-hour type test on 18 June 1934. The Dagger II made its first flight in Hawker Hart K2434 in January 1935. Like the Dagger I, the Dagger II needed further work before the engine could enter production.

Napier-Dagger-VIII-front

The Dagger VIII incorporated many changes from the previous Dagger engines and was capable of 1,000 hp (746 kw). Note the propeller shaft’s position has been raised above the engine’s centerline. (Napier/NPHT/IMechE image)

The Dagger III (E105) was a moderately supercharged version of the Dagger II. The engine had a maximum output of 805 hp (600 kW) at 4,000 rpm at 5,000 ft (1,524 m) with 2.25 psi (.15 bar) of boost, a normal output of 725 hp (541 kW) at 3,500 rpm at 3,500 ft (1,067 m) with 2.25 psi (.15 bar) of boost, and a takeoff output of 755 hp (563 kW) at 3,500 rpm with 3.5 psi (.24 bar) of boost. Fuel consumption at cruise power was approximately .448 lb/hp/hr (273 g/kW/h). Hawker Hart K2434 again served as a testbed and first flew with the Dagger III around September 1935. The improved engine was found to be reliable and was selected for the Hawker Hector, a two-seat liaison biplane. Hart K2434 was used to develop the engine cowling and installation for the Hector, and the Dagger III entered production in 1936. The Hector was first flown on 14 February 1936, and 179 examples were built. By June 1937, the Dagger III had completed a 100-hour test run at 4,000 rpm. Its initial output was record as 850 hp (634 kW). The engine was also selected for the Martin-Baker MB2 monoplane fighter, which made its first flight on 3 August 1938, but only the prototype was built. The Hector served in World War II, but the aircraft required extra maintenance due to its tight cowling and problematic Dagger III engine and was never a favorite of ground crews.

Napier-Dagger-VIII-rear

Rear view of a Dagger VIII highlighting the engine’s supercharger housing that conceals a two-sided impeller. The updraft carburetor can be seen on the right side of the engine. (Napier/NPHT/IMechE image)

In 1937, Dagger E108 incorporated several major changes. The engine had a double-entry, two-sided supercharger impeller for increased boost and incorporated an updraft carburetor. The propeller gear reduction housing was redesigned to accommodate a controllable-pitch propeller and moved up approximately 3.5 in (90 mm) above the engine’s centerline. The raised propeller shaft enabled the use of a larger diameter propeller. The relocation of the propeller shaft and redesign of the gear reduction housing resulted in the accessory drive shaft being powered by the left crankshaft, and the right crankshaft drove the magnetos and distributors mounted to the nose case. The propeller gear reduction was lowered to .308. New cylinders were designed with finer and more numerous cooling fins. Cylinder compression ratio was decreased slightly to 7.5 to 1. A single mounting pad on each side of the accessory case replaced the two pads previously used. Dagger E108 produced 935 hp (697 kW) at 4,100 rpm at 9,750 ft (2,972 m), and the engine was developed further as the Dagger VIII.

For the Dagger VIII, Napier developed a nose cowling with air ducts between the upper and lower cylinders. This was done in an attempt to make sure that the engine, once installed in an aircraft, was properly cooled. The Dagger VIII (E110) was first run in 1938 and had a maximum output of 1,000 hp (746 kw) at 4,200 rpm at 8,750 ft (2,667 m) with 5.0 psi (3.4 bar) of boost. The engine was rated at 925 hp (690 kW) at 4,000 rpm at 9,000 ft (2,743 m) with 4.0 psi (.28 bar) of boost and 955 hp (712 kW) for takeoff at 4,200 rpm with 6.0 psi (.41 bar) of boost. Its cruising output was 830 hp (619 kW) at 3,600 rpm at 7,000 ft (2,134 m) with 3.5 psi (.24 bar) of boost. Fuel consumption at cruise power was .461 lb/hp/hr (280 g/kW/h). The Dagger VIII was 73.9 in (1.88 m) long, 26.8 in (.62 m) wide, and 47.8 in (1.21 m) tall. The engine weighed 1,390 lb (630 kg).

Hawker-Hector

A Hawker Hector with its Dagger III was the most successful application of the engine in an airframe. However, maintenance crews did not like the engine or its tight cowling.

In March 1937, the Dagger VIII was selected for what would become the Handley Page HP.53 Hereford I, a twin-engine medium bomber monoplane. The Hereford was simply a Dagger-powered HP.52 Hampden, and 100 examples were ordered in August 1937. The selection of the Dagger engine was more out of necessity than desirability. With all the other orders coming in during the scramble to rearm in the late 1930s, an alternative powerplant was desired to substitute for the standard Bristol Pegasus engines in the Hampden. The Hereford prototype (L7271) made its first on 8 October 1938. Cooling issues were encountered during flight trials, and the cowlings were modified and redesigned several times. The first production Hereford I (L6002) first flew on 17 May 1939. Persistent issues with the Dagger engines resulted in most of the 100 Herefords ordered being finished with Pegasus engines, since Pegasus production was able to keep up with demand. The few Herefords that retained their Dagger engines were used mostly as trainers. The Dagger VIII was also installed in Fairey Battle K9240 for engine tests. The Dagger VIII-powered battle made its first flight in November 1938.

The last of the Dagger line was the E112. This was an enlarged Dagger with a 4.0625 in (103 mm) bore, a 3.9375 in (100 mm) stroke, and a total displacement of 1,225 cu in (20.07 L). The E112 engine design dated from around 1939 and may have been a development of E104. It does not appear that the E112 was ever built.

Handley-Page-HP.52-Hereford-I

The first Handley Page HP.52 Hereford I production aircraft (L6002) with its Dagger VIII engines. The cowling was similar to that developed for the Rapier. Note the carburetor intake under the engine and the cooling air exit door on the side of the rear cowling.

Like the Rapier, cooling the Dagger engine was difficult while the aircraft was on the ground. Cylinder head temperatures would often reach their upper limit before oil temperatures reached their lower limit. The result was that an aircraft would take off with oil temperature too low. This affected the oil’s ability to flow and led to the failure of various internal engine components. The Dagger did not achieve a level of success that warranted the engine’s mass production. However, what production there was of the Rapier and Dagger was enough to keep Napier going. The British Air Ministry was somewhat sympathetic to the powerful, compact, high-revving, small-frontal-area aircraft engine concept and continued to support Napier and Halford. By 1939, Napier was fully focused on developing the 2,000 hp (1,491 kW) Sabre engine for the war in Europe. While the air-cooled Dagger H-24 may have contributed to the knowledgebase upon which the liquid-cooled Sabre H-24 was built, the engines were very different. A Dagger II is preserved and in storage as part of the Smithsonian National Air and Space Museum. One Dagger VIII is on display at the Royal Air Force Museum in London, England and another is part of the Science Museum’s collection at Wroughton, England.

Napier-Dagger-VIII-RAF

A Dagger VIII engine preserved and on display at the Royal Air Force Museum in London, England. Note the baffles on the cylinders to direct the flow of cooling air through the fins. (Nimbus227 image via Wikimedia Commons)

Sources:
Aero Engines Vol. II by Various Authors (1939)
British Piston Aero-Engines and Their Aircraft by Alec Lumsden (2003)
By Precision Into Power by Alan Vessey (2007)
Boxkite to Jet — the remarkable career of Frank B Halford by Douglas R Taylor (1999)
Aircraft Engines Volume Two by A. W. Judge (1947)
Jane’s All the World’s Aircraft 1935 by C. G. Grey (1935)
Jane’s All the World’s Aircraft 1939 by C. G. Grey (1939)
Aerosphere 1939 by Glenn D. Angle (1940)
Aircraft Engines of the World 1941 by Paul H. Wilkinson (1941)
An Account of Partnership – Industry, Government and the Aero Engine by George Bulman and edited by Mike Neale (2002)
Hawker Aircraft since 1920 by Francis K. Mason (1991)
Fairey Aircraft since 1918 by H. A. Taylor (1974/1988)
Handley Page Aircraft since 1907 by C. H. Barnes (1976)
– “The Napier-Halford Daggers” Flight (11 July 1935)
– “Accent on the Aspirate” Flight (10 June 1937)
– “The Napier Dagger VIII” Flight (12 January 1939)

Napier-Rapier-VI

Napier H-16 Rapier Aircraft Engine

By William Pearce

Frank Bernard Halford had been an aircraft engine designer since World War I. In 1923, he established himself as a for-hire consultant to design aircraft engines for established manufacturers. By 1927, Halford had designed a new high-revving aircraft engine with numerous small cylinders and minimal frontal area. Halford’s belief was that a smaller engine running at a faster speed would produce the same power as a larger engine running at a slower speed. The new engine design was a vertical H with four cylinder banks, each with four individual cylinders.

Napier-Rapier-I

The Napier Rapier I with its intake and exhaust ports mounted on opposite sides of the cylinder, Note the magnetos mounted to the rear of the engine and the external oil line on the crankcase.

Halford showed the design to George Purvis Bulman, the Chief Inspector (of engines) for the British Ministry of Munitions. Bulman was impressed with the design and knew that the British engineering firm D. Napier & Son (Napier) was in search of a new product. Napier’s Lion W-12 aircraft engine was designed 10 years previous, and the company had stopped producing automobiles in 1924. Napier wanted to pursue the development of new aircraft engines but felt that its current in-house design department did not have the needed experience.

Bulman introduced Halford to George Pate, Napier’s Production Chief Engineer. With the blessing of Napier’s board of directors and its chairman, Montague Stanley Napier, Halford was contracted in 1928 to design aircraft engines for Napier. One stipulation was that the engines must fall between a displacement of 404.09 and 718.37 cu in (6.62 and 11.77 L) to not conflict with any of Halford’s projects with other companies. Halford immediately began detailed design work on the H-16 engine, which would eventually be known as the Rapier. The engine is often referred to as the Napier-Halford Rapier.

Napier-Rapier-I-rear-and-front

Rear and front views of the Rapier I. On the left, the upper “Y” intake pipe can be seen behind the spark plug wires. On the right, the intake manifolds can be seen atop the inner side of the cylinder banks, just under the valve rocker housings.

Much of Halford’s previous aircraft engine experience was with air-cooled cylinders, and the 16-cylinder Rapier was no different. An Air-cooled engine was lighter and less complex than a liquid-cooled engine. The Rapier had a two-piece aluminum crankcase that was split horizontally at its center. The left and right crankshafts were supported between the two crankcase halves via five main bearings each. Each one-piece, four-throw crankshaft served one vertical and one inverted bank of cylinders. The crankshafts were phased at 180 degrees (some sources say 90 degrees, and it may be that the Rapier I was so phased and that later engines were at 180 degrees). Power strokes occurred simultaneously for both crankshafts. The connecting rod attached to each crankpin was a master rod with an articulating rod mounted to its end cap. When viewed from the rear, master rods served the upper left and lower right cylinder banks. Spur gears at the front of each crankshaft meshed with a larger gear that was mounted to the propeller shaft, which turned at .390 crankshaft speed. When viewed from the rear, both crankshafts rotated clockwise, and the propeller shaft rotated counterclockwise.

The air-cooled cylinders were made of aluminum heads that were screwed and shrunk onto forged steel barrels. Each cylinder was mounted to the crankcase via four studs. The cylinders had a 6.0 to 1 compression ratio, and each cylinder had a single intake and a single exhaust valve. The intake port was on the inner side of the cylinder, and the exhaust port was on the outer side. The valves for each set of eight upper and lower cylinders were actuated by a single camshaft via pushrods and rockers. Each camshaft was located between its respective set of cylinders (upper and lower). Each cylinder had one spark plug mounted on its outer side and another mounted on its inner side.

De-Havilland-DH77

The Havilland DH.77 prototype fighter monoplane was initially powered by a Rapier I engine, but a Rapier II was later installed. Note the individual exhaust stacks and the machine gun installed on the side of the aircraft.

An accessory drive case was mounted to the back of the engine. A shaft extending back from the propeller shaft powered the accessory drive gears. Driven from the accessory case were the camshafts, magnetos, supercharger, generator, and various accessories. The engine’s two magnetos were mounted to the rear of the accessory case, and each magneto fired one of the cylinder’s two spark plugs. The single-speed supercharger drew in air through an updraft carburetor and compressed the air and fuel mixture with a centrifugal impeller. The air and fuel mixture exited the top and bottom of the supercharger housing into a Y pipe that distributed the charge to each cylinder via a manifold that ran along the inner side of each cylinder bank. A hand crank or an air starter was used to start the engine.

Napier developed a cowling for the Rapier so that the engine could be installed as a complete package. The cowling was narrow in form and had large upper and lower scoops. For engine cooling, air was ducted between the upper and lower cylinders. Baffles directed the air’s flow through the cylinders’ integral cooling fins and to the outer side of the cylinder banks. The cooling air exited via a cowl flap on each side of the aircraft and behind the engine.

Napier-Rapier-II

The Rapier II had a revised cylinder with intake and exhaust ports on its outer sides. The supercharger housing was also modified with four outlets serving individual intake manifolds for each cylinder bank. Note the crankcase’s horizontal parting line.

The Napier Rapier I was designated by Napier as the E93. The engine had a 3.5 in (88.9 mm) bore and a 3.5 in (88.9 mm) stroke. Each cylinder displaced 33.7 cu in (.55 L), and the Rapier’s total displacement was 539 cu in (8.83 L). At sea level, the engine had a maximum output of 350 hp (261 kW) at 3,900 rpm and a normal output of 300 hp (224 kW) at 3,500 rpm. The Rapier I was 54 in (1.37 m) long, 21 in (.53 m) wide, and 35 (.90 m) tall. The engine weighed 620 lb (281 kg).

The Rapier I was first run around the start of 1929 and was mainly a developmental engine. The engine was installed in the de Havilland DH.77 (J9771) prototype fighter monoplane, which made its first flight on 11 July 1929. Although the aircraft exhibited good qualities, it was not selected for production. After completing its evaluation, the DH.77 was used to accumulate 100 hours of engine tests until December 1932. A Rapier II engine (see below) was then installed with a modified cowling. Engine development continued until the summer of 1934, when the aircraft was scrapped. The Rapier I was also installed in a Bristol Bulldog TM (K3183) biplane trainer around 1933. The aircraft served as the Rapier I test bed to evaluate the engine and cowling in a wind tunnel and in flight. Bulldog TM (K3183) kept its Rapier powerplant until 1938, when it was used to test another engine.

Napier-Rapier-IV

The Rapier IV was very similar to the Rapier II but with decreased supercharging. The baffles helped direct cooling air through the cylinder’s fins. Note the magneto mounted vertically from the accessory case.

The Rapier II was a development of the Rapier I with the supercharger’s impeller geared at a higher speed to improve the engine’s performance at altitude. New cylinders were used that had the intake and exhaust ports both located on the outer side of the cylinder. The induction system was revised with four outlets from the supercharger that distributed the air and fuel mixture via separate manifolds to each cylinder bank. The accessory case was also updated with the magnetos mounted vertically.

The Rapier II carried the Napier designation E95 and was first run in 1932. At 10,000 ft (3,048 m), the Rapier II had a maximum output of 355 hp (265 kW) at 3,900 rpm and a normal output of 305 hp (227 kW) at 3,500 rpm. The engine was 55.25 in (1.40 m) long, 20.75 in (.53 m) wide, and 35.25 (.90 m) tall. The engine weighed 710 lb (322 kg). As mentioned above, the engine was installed in the DH.77 prototype, which flew in this configuration in early 1933.

Napier-Rapier-VI

The Rapier VI had a revised, magnesium crankcase, a separate gear reduction housing, and used a downdraft carburetor. Otherwise, its structure was similar to that of the Rapier IV.

The Rapier IV was similar to the Rapier II, but it generated maximum power at low altitude due to revised supercharger gearing. At sea level, the Rapier IV had a maximum output of 385 hp (287 kW) at 3,900 rpm and a normal output of 340 hp (254 kW) at 3,500 rpm. The Rapier IV was 52.0 in (1.32 m) long, 21 in (.53 m) wide, and 37.7 in (0.96 m) tall. The engine weighed 726 lb (329 kg). The Rapier IV was first run in 1933, and Napier purchased an Airspeed Courier AS.5C (G-ACNZ) touring aircraft to serve as an engine testbed that same year. The AS.5C with its Rapier IV engine was first flown in June 1934. The aircraft was used as a demonstrator for a few years. By 1937, the engine had been replaced, and the aircraft was sold. Prior to AS.5C’s delivery, two Rapier IV engines were installed in a Saro A.19/1A Cloud (G-ABCJ) amphibious transport. The A.19/1A was the first testbed for the Rapier IV. The aircraft was loaned to Jersey Airways in August 1935 and withdrawn from service in December 1936.

The Rapier V was a further development of the Rapier line. Changes consisted of a magnesium crankcase, a separate updated gear reduction housing, fork-and-blade connecting rods, and an increased compression ratio of 7.0 to 1. The forked rods were in the rear lower cylinders, second from rear upper cylinders, second from front lower cylinders, and front upper cylinders. The induction system was revised to accommodate a downdraft carburetor. The engine was given the Napier designation E100 and was first run in around 1934. At 10,000 ft (3,048 m), the Rapier V had a maximum output of 380 hp (283 kW) at 4,000 rpm and a normal output of 340 hp (254 kW) at 3,650 rpm. Fuel consumption at cruise power was approximately .429 lb/hp/hr (261 g/kW/h) at 240 hp (179 kW) and 3,300 rpm. The Rapier V was 57.37 in (1.46 m) long, 23.37 in (.59 m) wide, and 36.0 in (.91 m) tall. The engine weighed 720 lb (326 kg). Four of the engines were installed in the Short S.20 Mercury (G-ADHJ) seaplane, which first flew on 5 September 1937. These engines were replaced with Rapier VIs in June 1938.

Napier-Rapier-VI-front-and-rear

Front and rear views of the Rapier VI. Internally, the engine used fork-and-blade connecting rods and had a cylinder compression ratio of 7.0 to 1. It was the most powerful of the Rapier engines.

The Rapier VI (possibly E106) was similar to the Rapier V, but with decreased supercharging. The Rapier VI had a maximum rating of 395 hp (295 kW) at 4,000 rpm at 6,000 ft (1,829 m); a normal rating of 370 hp (276 kW) at 3,650 rpm at 4,750 ft (1,448 m); and a takeoff rating of 365 hp (272 kW) at 3,500 rpm at sea level. Fuel consumption at cruise power was approximately .412 lb/hp/hr (251 g/kW/h) at 310 hp (231 kW) and 3,500 rpm. The engine was 56.6 in (1.44 m) long, 22.4 in (.57 m) wide, and 36.0 in (.91 m) tall. The Rapier IV weighed 713 lb (313 kg). The engine was first installed in the Fairey Seafox reconnaissance float plane, which made its first flight on 27 May 1936. Early issues were experienced with engine cooling, but ultimately 66 Seafoxes were built, making it the most successful Rapier application. The Seafox was withdrawn from service in 1943. The Rapier IV was also installed in the Blackburn H.S.T.10 transport, the development of which was halted in 1936, before the aircraft was completed.

Fairey-Seafox

The Fairey Seafox reconnaissance float plane was powered by the Rapier VI engine, and 66 examples of the aircraft were built.

As previously mentioned, four Rapier VI engines were installed in the Short S.20 Mercury in June 1938. When the S.20 was mounted atop the Short S.21 Maia, the pair formed the Short-Mayo Composite, which was envisioned to provide long-range transport service. After being hoisted aloft by the Short S.21 Maia on 21 July 1938, the S.20 separated and later completed the first commercial, non-stop East-to-West transatlantic flight by a heavier-than-air machine. The Maia-Mercury composite went on to establish a seaplane distance record, covering 6,045 miles (9,728 km) between 6 and 8 October 1938. The Mercury and Maia made several flights until commercial operations were suspended due to World War II.

Cooling the Rapier engine was particularly difficult while the aircraft was on the ground. The uncuffed propellers did not provide sufficient airflow to effectively cool the engine, especially the rear cylinders. This issue was never fully resolved. In the early 1930s, Napier and Halford were working on the development of other aircraft engines, which would ultimately lead to the air-cooled Dagger H-24 and liquid-cooled Sabre H-24. By mid-1935, resources at Napier were wearing thin, and the decision was made to discontinue Rapier development so that efforts could be concentrated on other projects. Rapier production continued until around 1937. One Rapier VI engine was preserved and is on display at the Shuttleworth Collection in Bedfordshire, England.

Short-Maia-Mercury-Composite

The Short S.20 Mercury (top) and Short S.21 Maia (bottom) seaplane composite. Although originally fitted with four Rapier V engines, the Mercury had Rapier VIs installed for its service flights. The Maia was powered by four nine-cylinder Bristol Pegasus radial engines.

Sources:
– “The Napier Rapier” Flight (14 March 1935)
British Piston Aero-Engines and their Aircraft by Alec Lumsden (2003)
By Precision Into Power by Alan Vessey (2007)
Boxkite to Jet — the remarkable career of Frank B Halford by Douglas R Taylor (1999)
Aircraft Engines Volume Two by A. W. Judge (1947)
Jane’s All the World’s Aircraft 1931 by C. G. Grey (1931)
Jane’s All the World’s Aircraft 1934 by C. G. Grey (1934)
Jane’s All the World’s Aircraft 1936 by C. G. Grey (1936)
Aerosphere 1939 by Glenn D. Angle (1940)
An Account of Partnership – Industry, Government and the Aero Engine by George Bulman and edited by Mike Neale (2002)
Aircraft Engines of the World 1941 by Paul H. Wilkinson (1941)
Bristol Aircraft since 1910 by C. H. Barnes (1964/1994)
De Havilland Aircraft since 1909 by A. J. Jackson (1987)
Airspeed Aircraft since 1931 by H. A. Taylor (1970)
Saunders and Saro Aircraft since 1917 by Peter Jackson (1988)
Shorts Aircraft since 1900 by C. H. Barnes (1989)
Fairey Aircraft since 1918 by H. A. Taylor (1974/1988)
Blackburn Aircraft since 1909 by A. J. Jackson (1968/1989)

Mitsubishi-Ha-43-NASM-TF

Mitsubishi [Ha-43] (A20 / Ha-211 / MK9) Aircraft Engine

By William Pearce

In 1916, the Internal Combustion Engine Section, Machinery Works (Nainenki-ka Zokisho) of the Mitsubishi Shipbuilding Company Ltd (Mitsubishi Zosen KK) was formed to build aircraft engines. A number of licenses to build engines in Japan were acquired from various European engine manufacturers. Initially, the engines were of the Vee type. The aircraft engine works was renamed Mitsubishi Aircraft Company Ltd (Mitsubishi Hokuki KK) in 1928. In the late 1920s, licenses were acquired to produce the five-cylinder Armstrong Siddeley Mongoose and the nine-cylinder Pratt & Whitney R-1690 Hornet air-cooled radial engines.

Mitsubishi-Ha-43-front-and-left

Front and side views of the Mitsubishi [Ha-43] (A/20 / Ha-211 / MK9). The engine performed well but was underdeveloped. Its development and production were slowed by bombing raids and materiel shortages. The engine powered two of Japan’s best next-generation fighters, the A7M2 and Ki-83. While the aircraft were excellent, the war was already lost.

In 1929, Mitsubishi built the first aircraft engine of its own design. Carrying the Mitsubishi designation A1, the engine was a two-row, 14-cylinder, air-cooled radial of 700 hp (522 kW). This engine was followed in 1930 by the A2, a 320 hp (237 kW) nine-cylinder radial. A larger 600 hp (477 kW) nine-cylinder engine, the A3, was also built the same year. None of these early engines were particularly successful, and only a small number were built: one A1, 14 A2s, and one A3. However, Mitsubishi learned many valuable lessons that it applied to its next engine, the A4 Kinsei.

The two-row, 14-cylinder A4 was developed in 1932 and was initially rated at 650 hp (485 kW). The A4 had a 5.51 in (140 mm) bore, a 5.91 in (150 mm) stroke, and a total displacement of 1,973 cu in (32.33 L). In 1934, Mitsubishi consolidated its subsidiaries and became Mitsubishi Heavy Industries Ltd (Mitsubishi Jukogyo KK). Also in 1934, an upgraded version of the A4 engine was developed as the 830 hp (619 kW) A8 Kinsei. The Kinsei was under continual development through World War II, and numerous versions of the engine were produced. Ultimately, the last variants were capable of 1,500 hp (1,119 kW), and production of all Kinsei engines totaled approximately 15,325 units.

In mid-1941, Mitsubishi began work on an 18-cylinder engine that carried the company designation A20. The engine was intended to be lightweight and produce 2,200 hp (1,641 kW). The A20 design was developed from the Kinsei, although the 18-cylinder A20 really only shared its bore and stroke with the 14-cylinder engine—it is not even clear if the pistons were interchangeable. The team at Mitsubishi designing the A20 engine were Kazuo Sasaki—main engine section; Kazuo Inoue, Ding Kakuda, and Mitsukuni Kada—supercharger and auxiliary equipment; Katsukawa Kurokawa—propeller gear reduction; Shigeta Aso—engine cooling; Shuichi Sugihara—fuel injection system, and Shin Nakano—turbosupercharger. The A20 eventually carried the Imperial Japanese Army (IJA) designation Ha-211, the Imperial Japanese Navy (IJN) designation MK9, and the joint designation [Ha-43]. For simplicity, the joint designation will primarily be used. However, few sources agree on the engine’s various sub-type designations, and there is some doubt regarding their accuracy.

Tachikawa-Ki-94-I-mockup

The mockup of the Tachikawa Ki-94-I illustrated the aircraft unorthodox configuration. With its two [Ha-43] engines, the fighter had an estimated top speed of 485 mph (781 km/h). However, its complexity led to its cancellation and the pursuit of a more conventional design.

The Mitsubishi [Ha-43] had two rows of nine cylinders mounted to an aluminum crankcase. The crankcase was formed by three sections. Each section was split vertically through the centerline of a cylinder row, with the middle section split between both the front and rear cylinder rows. Each crankshaft section contained a main bearing to support the built-up, three-piece crankshaft. An additional main bearing was contained in the front accessory drive. The cylinders were made up of a steel barrel screwed and shrunk into a cast aluminum head. Each cylinder had one intake valve and one sodium-cooled exhaust valve. The valves were actuated by separate rockers and pushrods. Unlike the Kinsei engine, the [Ha-43] did not have all of its pushrods at the front of the engine. The [Ha-43] had a front cam ring that drove the pushrods for the front cylinders, and a rear cam ring that did the same for the rear cylinders. When viewed from the rear, the cylinder’s intake port was on the right side, and the exhaust port was on the left. Sheet metal baffles attached to the cylinder head helped direct the flow of cooling air through the cylinder’s fins. Cylinder numbering proceeded clockwise around the engine when viewed from the rear. The vertical cylinder atop the second row was No. 1 Rear, and the inverted cylinder under the front row was No. 1 Front.

At the front of the engine was the propeller gear reduction and the magneto drive. Planetary gear reduction turned the propeller shaft clockwise at .472 times crankshaft speed. Each of the two magnetos mounted atop the gear reduction fired one of the two spark plugs mounted in each cylinder. One spark plug was located on the front side of the cylinder and the other was on the rear side. A 14-blade cooling fan was driven by the propeller shaft and mounted in front of the gear reduction. Not all [Ha-43] engines had a cooling fan. At the rear of the engine was an accessory and supercharger section. The single-stage, two-speed, centrifugal supercharger was mechanically driven by the crankshaft. Individual intake runners extended from the supercharger housing to each cylinder. The intake and exhaust from the front cylinders passed between the rear cylinders, with the exhaust running above the intake runners. The supercharger’s inlet was directly behind the second row of cylinder. Behind the inlet was a fuel distribution pump that directed fuel to an injector installed by the inlet port of each cylinder.

The 18-cylinder [Ha-43] had a 5.51 in (140 mm) bore a 5.91 in (150 mm) stroke, and displaced 2,536 cu in (41.56 L). The basic engine with its 7.0 to 1 compression ratio and single-stage, two-speed supercharger produced 2,200 hp (1,641 kW) at 2,900 rpm and 10.1 psi (.69 bar) of boost for takeoff. Military power was 2,050 hp (1,527 kW) at 3,281 ft (1,000 m) in low gear and 1,820 hp (1,357 kW) at 21,654 ft (6,600 m) in high gear. Both power ratings were produced at 2,800 rpm and 8.1 psi (.56 bar) of boost. Anti-detonation (water) injection was available, but it is not clear at what point it was used—most likely for military power and above. The engine was 48 in (1.23 m) in diameter, 82 in (2.09 m) long, and weighed 2,161 lb (980 kg).

Tachikawa-Ki-74

The high-altitude Tachikawa Ki-74 was built around a pressure cabin for high-altitude flight. The aircraft most likely has [Ha-43] engines with a 14-blade cooling fan. The [Ha-42] engine had a 10-blade cooling fan. The exhaust from the turbosupercharger can be seen on the right side of the image.

[Ha-43] design work was completed in October 1941. The first engine was built at the Mitsubishi No. 2 Engine Works (Mitsubishi Dai Ni Hatsudoki Seisakusho), which was located in Nagoya and developed experimental engines, and was finished in February 1942. As the [Ha-43] was being tested, Mitsubishi proposed in April 1942 to use the engine for its new A7M fighter. The first [Ha-43] engine for the IJA was completed in August 1942. In September 1942, the IJN selected the 2,000 hp (1,491 kW) Nakajima [Ha-45] engine for the A7M1 and many of its other high-powered fighter projects under development. This setback inevitably slowed development of the [Ha-43]. At the time, there were no applications for the engine, with the IJA feeling it was too powerful and the IJN selecting the Nakajima engine. Two more [Ha-43] engines, one each for the IJA and IJN were completed in November 1942.

Mitsubishi continued development at a slow pace, hampered in part by difficulties with designing turbine wheels for the engine’s remote turbosupercharger. It was not until June 1943 that the [Ha-43] passed operational tests and began to be selected for installation on several aircraft types and not just projects. The first [Ha-43]-powered aircraft to fly was the third prototype of the Tachikawa Ki-70. The Ki-70 was a twin-engine reconnaissance aircraft with a glazed nose and twin tails. Originally powered by two 1,900 hp (1,417 kW) Mitsubishi [Ha-42] engines, the aircraft’s performance was lacking, and the third prototype was built with two turbosupercharged [Ha-43] 12 (IJA Ha-211-IRu) engines. The [Ha-43] 12 produced 2,200 hp (1,641 kW) for takeoff; 1,930 hp (1,439 kW) at 16,404 ft (5,000 m); and 1,750 hp (1,305 kW) at 31,170 ft (9,500 m). First flying in late 1943, the [Ha-43] 12-powered aircraft still underperformed, and the engines were unreliable. Development of the Ki-70 was abandoned.

Mitsubishi-A7M2-Reppu-Ha-43

The Mitsubishi A7M2 Reppu (Strong Gale) with its [Ha-43] 11 engine did not have a cooling fan like the A7M1. As a result, the cowling was redesigned with a larger opening and scoops for the engine intake (top) and oil cooler (lower). Note that the individual exhaust stacks were grouped together, mostly in pairs.

In 1943, Tachikawa designed the tandem-engine, twin-boom Ki-94-I (originally Ki-94) fighter powered by two [Ha-43] 12 (IJA Ha-211-IRu) engines. The cockpit was positioned between the two engines, which were mounted in a push-pull configuration in the short fuselage that sat atop the aircraft’s wing. The front and rear engines both turned four-blade propellers. The front propeller was 10 ft 10 in (3.3 m) in diameter, and the rear was 11 ft 2 in (3.4 m) in diameter. After a mockup was inspected in October 1943, the design was judged to be too unorthodox and complex. This resulted in a complete redesign to a more conventional single engine aircraft, the Ki-84-II, which was powered by a 2,400 hp (1,790 kW) Nakajima [Ha-44] engine.

In early 1944, two [Ha-43] 12 (IJA Ha-211-I) engines were installed in the Tachikawa Ki-74, a pressurized, high-altitude, long-range reconnaissance bomber with a conventional taildragger layout. With only the mechanical two-speed supercharger, the [Ha-43] 12 produced 2,200 hp (1,641 kW) for takeoff; 2,020 hp (1,506 kW) at 3,281 ft (1,000 m) in low gear; and 1,800 hp (1,342 kW) at 16,404 ft (5,000 m) in high gear. The Ki-74 made its first flight in March 1944, and turbosupercharged [Ha-43] 12 (IJA Ha-211-IRu) engines were installed in the second and third prototypes. The turbosupercharger was located behind the engine on the outer side of the nacelle and improved the aircraft’s performance at altitude. However, the [Ha-43] engines were still under development and suffered from reliability and vibration issues. Subsequent Ki-74 aircraft used larger and less-powerful Mitsubishi [Ha-42] engines.

Mitsubishi-Ki-83-Ha-43

Like the A7M2, the Mitsubishi Ki-83 also did not use a cooling fan on its [Ha-43] engine. However, the Ki-83 did have a turbosupercharger which helped it achieve its very impressive performance of at least 438 mph (705 km/h) at 29,530 ft (9,000 m). Note the sheet-metal baffles on the cylinder heads.

In the summer of 1944, Mitsubishi was given permission to install a [Ha-43] 11 (IJN MK9A, similar to the [Ha-43] 12) engine in an A7M1 airframe, creating the A7M2. The Mitsubishi A7M Reppu (Strong Gale) was a carrier-based fighter intended to replace the A6M Zero. The A7M1 prototypes had underperformed with the 2,000 hp (1,491 kW) Nakajima [Ha-45] engine selected by the IJN. The [Ha-43]’s installation in the A7M2 was conventional, and the aircraft made its first flight on 13 October 1944. Performance met expectations, and the A7M2 was ordered into production. Subsequently, manufacturing of the [Ha-43] started to ramp up, with 13 engines being built in March 1945. The following month, [Ha-43] 11 production was sanctioned at the Mitsubishi No. 4 Engine Works (Mitsubishi Yon Hatsudoki Seisakusho) in Nagoya. On 1 May 1945, Mitsubishi No. 18 Engine Works (Mitsubishi Dai Juhachi Hatsudoki Seisakusho) was established in Fukui city to build [Ha-43] 11 engines for the IJN, while the No. 4 Engine Works would build engines for the IJA. As events played out, only seven or eight A7M2s were built by the end of the war, the No. 18 Engine Works never produced a complete engine, and bombing raids prevented the March 1945 [Ha-43] production numbers from ever being eclipsed.

Further developments of the A7M were planned, such as the A7M3 powered by a [Ha-43] 31 (IJN MK9C) engine with a single-stage, three-speed mechanical supercharger. The [Ha-43] 31 produced 2,250 hp (1,678 kW) for takeoff; 2,000 hp (1,491 kW) at 5,906 ft (1,800 m) in low gear; 1,800 hp (1,342 kW) at 16,404 ft (5,000 m) in medium gear; and 1,660 hp (1,238 kW) at 28,543 ft (8,700 m) in high gear. The three-speed supercharger added about 5.4 in (138 mm) to the engine’s length and 88 lb (40 kg) to the engine’s weight, increasing the respective totals to 87 in (2.22 m) and 2,249 lb (1,020 kg). The A7M3-J would incorporate the [Ha-43] 11 engine with a turbosupercharger installed under the cockpit to produce 2,200 hp (1,641 kW) for takeoff; 2,130 hp (1,588 kW) at 22,310 ft (6,800 m); and 1,920 hp (1,432 kW) at 33,793 ft (10,300 m). While the A7M2 did not have a cooling fan, one was used in the A7M3 and A7M3-J designs.

Mitsubishi-Ki-83-turbo

The turbosupercharger installed in the Ki-83’s left engine nacelle. The large duct on the right was for the exhaust after it passed through the turbosupercharger. The outlet at the end of the nacelle was from the wastegate. Both were positioned to provided additional thrust. The Ki-83 had a ceiling of 41,535 ft (12,660 m).

In the fall of 1944, two [Ha-43] 12 (IJA Ha-211-IRu) engines were installed in the Mitsubishi Ki-83. The Ki-83 was a twin-engine heavy fighter with a conventional taildragger layout. A turbosupercharger was placed in the rear of each engine nacelle. Fresh air would enter the turbocharger near the rear of the nacelle on the outboard side, be compressed, and then flow to the engine through an air box in the upper nacelle. The engine’s exhaust was expelled from the turbocharger on the inboard side of the nacelle, and a wastegate was positioned at the end of the nacelle. The exhaust arrangement provided some additional thrust. Each engine turned an 11 ft 6 in (3.5 m) diameter, four-blade propeller. The Ki-83 made its first flight on 18 November 1944, but with the main focus on single-engine interceptors, only one was built before the Japanese surrender.

In April 1945, a [Ha-43] 42 (IJN MK9D) was installed in the Kyushu J7W1 Shinden (Magnificent Lightning), an unconventional pusher fighter with a canard layout. The [Ha-43] 42 had two-stage supercharging, with the first stage made up by a pair of transversely-mounted centrifugal impellers, one on each side of the engine. The shaft of these impellers was joined to the engine by a continuously variable coupling. The output from each of the first stage impellers joined together as they fed the normal, two-speed supercharger mounted to the rear of the engine and geared to the crankshaft. The [Ha-43] 42 produced 2,030 hp (1,514 kW) at 2,900 rpm with 9.7 psi (.67 bar) of boost for takeoff. Military power at 2,800 rpm and 5.8 psi (.40 bar) of boost was 1,850 hp (1,380 kW) at 6,562 ft (2,000 m) in low gear and 1,660 hp (1,238 kW) at 27,559 ft (8,400 m) in high gear. An extension shaft approximately 29.5 in (750 mm) long extended back from the engine to a remote propeller reduction gear box. The gear reduction turned the 11 ft 2 in (3.40 m), six-blade propeller at .412 times crankshaft speed and also drove a 12-blade cooling fan that was 2 ft 11 in (900 mm) in diameter.

Kyushu-J7W1-Shinden-Ha-43-42-engine

The [Ha-43] 42 (IJN MK9D) installed in the Kyushu J7W1 Shinden, pictured while the aircraft was in storage at the Smithsonian National Air and Space Museum’s Paul E. Garber facility. The front of the aircraft is on the left. One of the two transversely-mounted, first-stage superchargers can be seen left of the engine, and the ducts from both superchargers can be seen joining together as they feed the mechanically-driven supercharger at the rear of the engine. Note that the exhaust stacks are flowing toward the front of the engine (rear of the aircraft).

Since the engine was mounted with the propeller shaft toward the rear of the aircraft, it incorporated new cylinders with the exhaust port on the side opposite of the intake port. The intake port faced toward the supercharger (front of the aircraft), and the exhaust port faced toward the propeller (rear of the aircraft). The engine’s individual exhaust pipes were used to help the flow of air through the cowling and oil coolers. After flowing through the oil cooler on each side of the aircraft, air was mixed with the exhaust from four cylinders and ejected out a slit on the side of the fuselage just before the spinner. The ejector exhaust helped draw air through the oil coolers. The same was true for the exhaust from the lower six cylinders, which was ducted into an augmenter that helped draw cooling air through the engine cowling and out an outlet under the spinner. The exhaust from the remaining four cylinders, which were located on the top of the engine, exited via two outlets arranged atop the cowling to generate thrust.

The J7W1 made its first flight on 3 August 1945. The third J7W1 was planned to have a [Ha-43] 43 engine that used a single impeller for its first-stage, continuously variable supercharger and produced an additional 130 hp (97 kW) for takeoff. Production J7W1 aircraft would be powered by a 2,250 hp (1,678 kW) [Ha-43] 51 engine with a single-stage, three-speed, mechanical supercharger replacing the two-stage setup with the continuously variable first stage. The engine would turn a four-blade propeller, 11 ft 6 in or 11 ft 10 in (3.5 m or 3.6 m) in diameter. However, only the first J7W1 was completed by war’s end.

Mitsubishi-Ha-43-NASM-TF

The [Ha-43] 11 engine with cooling fan in storage as part of the Smithsonian National Air and Space Museum’s collection. Note the rust on the steel cylinder barrels. The spark plug wires are disconnected and desiccant plugs have been installed to help preserve the engine. (Tom Fey image)

In January 1945, construction commenced on the Mansyu Ki-98 (or Manshu Ki-98), a twin-boom pusher fighter with tricycle undercarriage. A single, turbosupercharged [Ha-43] 12 (IJA Ha-211-IRu) engine turning an 11 ft 10 in (3.6 m) four-blade propeller would power the aircraft. With the exception of the turbosupercharger, the installation was similar to that of the J7W1 with an extension shaft and remote propeller gear reduction. The prototype was ready for assembly when it was destroyed in August 1945 to prevent its capture by Soviet forces.

In addition to the aircraft listed above, the [Ha-43] was selected to power a number of aircraft projects that were not built. Plans were initiated to use the [Ha-43] to repower a number of different production aircraft that used the 2,000 hp (1,491 kW) Nakajima [Ha-45]. However, none of these retrofit redesigns were carried out before the end of the war. From 1942 to 1945, the production run of the [Ha-43] amounted to only 77 engines, and it was not fully developed by the end of the war.

At least three [Ha-43] engine survive, and all three are held by the Smithsonian National Air and Space Museum. One engine does not have a cooling fan and is probably a [Ha-43] 11 for a A7M2. The second engine is a [Ha-43] 11 with a cooling fan. The third engine is a [Ha-43] 42 still installed in the J7W1 prototype. All of the engines are in storage and not on display.

Mitsubishi-Ha-43-NASM-no-fan

The fanless [Ha-43] 11 engine held by the Smithsonian National Air and Space Museum. The fuel distribution pump with its 18 lines can be seen atop the rear of the engine. The small-diameter lines appear to be made of copper.

Sources:
Japanese Aero-Engines 1910 – 1945 by Mike Goodwin and Peter Starkings (2017)
Japanese Secret Projects by Edwin M. Dyer III (2009)
Japanese Secret Projects 2 by Edwin M. Dyer III (2014)
Japanese Aircraft of the Pacific War by René J. Francillon (1979/2000)
The History of Mitsubishi Aero-Engines 1915–1945 by Matsuoka Hisamitsu and Nakanishi Masayoshi (2005)
– “Mitsubishi Heavy Industries, LTD” The United States Strategic Bombing Survey, Corporation Report No. I (June 1947)
– “Design Details of the Mitsubishi Kinsei Engine” by W. G. Ovens, Aviation (August 1942)
https://www.secretprojects.co.uk/threads/a-brief-history-of-mitsubishi-mk9-or-ha-43.21030/
https://www.secretprojects.co.uk/threads/mitsubishi-a7m-%C2%AB-reppu-%C2%BB-sam.7230/

Continental-XI-1430-right-front

Continental XI-1430 Aircraft Engine

By William Pearce

In 1932, the Army Air Corps (AAC) contracted the Continental Motors Company to develop a high-performance (Hyper) cylinder that would produce 1 hp per cu in (.7 kW per 16 cc). Based on promising test results, an order was placed for a 1,000 hp (746 kW), 12-cylinder O-1430 aircraft engine. The AAC had stipulated that the engine needed to be a horizontally opposed (flat) configuration and use individual cylinders. Lengthy delays were encountered with development of the Hyper No. 2 cylinder, and the situation was made worse by Continental’s financial state. Continental did not fund much of the project, and each change and every purchase was sent to the AAC for contractual approval.

Continental-XI-1430-right-front

The Continental XI-1430 was a compact, high-performance aircraft engine capable of producing an impressive amount of power but also suffered from reliability issues. The mounting pads on the front accessory case, below the nose case, were for the starter and generator.

The O-1430 was finally completed and run in 1938. While it did meet the 1,000 hp (746 kW) goal, the six years of development rendered the engine obsolete. The Allison V-1710 and the Rolls-Royce Merlin had already passed the 1,000 hp (746 kW) mark years previously. However, the AAC and Continental believed that the engine could be reworked to produce 1,600 hp (1,193 kW). In 1939, the AAC requested that Continental use the O-1430 as the basis for an inverted Vee engine designated XI-1430. Especially early on, the engine was also referred to as the XIV-1430 or IV-1430. The XI-1430 would keep the basic individual cylinders of the O-1430, but the cooling requirement was changed from 300° F (149° C) to 250° F (121° C). The Vee configuration (even if inverted) and 250° F (121° C) coolant were preferred by Continental from the start. To speed development of the engine, Continental agreed to put at least $250,000 of its own money toward the project and was willing to proceed based on verbal agreements with the AAC rather than waiting for changes to be specified in writing.

In 1940, Continental Motors Company created a subsidiary known as Continental Aviation and Engineering Corporation to develop aircraft engines of over 500 hp (373 kW). Most of the XI-1430 development was done under the Continental Aviation and Engineering Corporation. The XI-1430 was essentially a new engine with perhaps just the pistons, connecting rods, and a few other parts being interchangeable with the earlier O-1430.

The XI-1430 had a one-piece aluminum crankcase. The crankshaft was supported by seven main bearings and secured to the crankcase by bearing caps. A cover plate sealed the top of the inverted crankcase. Two banks of six individual cylinders were secured to the crankcase via studs. The cylinder banks had an included angle of 60 degrees. The pistons were attached to the crankshaft via fork-and-blade connecting rods. When viewed from the rear, the blade rods served the left bank, and the fork rods served the right bank.

Continental-XI-1430-9-clockwise-geartrain

The gear train of a clockwise-turning (right-handed) XI-1430-9. Unlike with the O-1430 in which a few gears could be swapped for clockwise vs counterclockwise rotation, the XI-1430 had a different gear train that incorporated various idler gears for counterclockwise rotation.

The cylinders used the same bore and stroke as the Hyper No. 2 test cylinder and the O-1430. While their design was similar to the previous applications, the XI-1430’s cylinders had been further refined. Each cylinder was made up of a forged steel barrel screwed and shrunk into a forged aluminum cylinder head. The new cylinder head was more compact than that used previously. A steel water jacket surrounded the cylinder barrel and was secured to the cylinder head. Two spark plugs were installed in each cylinder, with one by the intake port and the other by the exhaust port. The cylinder had a single intake valve and a single sodium-cooled exhaust valve. Both valves were actuated by a single overhead camshaft located in a housing that bolted atop all the cylinders of a given bank. Each camshaft was driven through bevel gears by a nearly-horizontal shaft at the front of the engine. Various accessories were driven from the rear of the camshaft.

An updraft Stromberg injection carburetor was positioned at the extreme rear of the XI-1430 engine. It fed air and fuel into the single-speed, single-stage supercharger, which was mounted to the rear of the engine. The supercharger impeller was 10.5 in (267 mm) in diameter and turned at 5.928 times crankshaft speed. The supercharger drive case also powered various pumps: oil, water, vacuum, and hydraulic. An intake manifold led from the bottom of the supercharger and extended through the inverted Vee of the engine. Short individual runners branched off the manifold and supplied the air and fuel mixture to each cylinder.

An accessory drive case was mounted to the front of the engine. Driven from the accessory case were the starter, generator, an oil pump, and a single dual-magneto. The magneto was mounted on the upper front of the accessory drive case and fired the two spark plugs in each cylinder. The accessory drive case also housed the spur gears that made up part of the XI-1430’s propeller gear reduction. Mounted to the front of the accessory drive was a nose case that contained a bevel planetary gear reduction that drove the propeller shaft. The speed of the crankshaft was partly reduced via the spur gears in the accessory drive case, then further reduced via the planetary gears in the nose case. This two-stage gear reduction was probably adopted to keep the XI-1430’s frontal area to a minimum and possibly to extended the nose of the engine for a more streamlined installation. Depending on the engine model, the final speed of the propeller shaft was .360, .385, or .439 crankshaft speed.

Continental-XI-1430-front-and-rear

Front and rear views of the XI-1430 illustrate the engine’s rather compact configuration. On the front of the engine, the housings for the camshaft drives can just be seen between the accessory drive and the circular covers on the cylinder banks. Note the size of the supercharger housing on the rear view.

The Continental XI-1430 had a 5.5 in (140 mm) bore and a 5.0 in (127 mm) stroke. The engine displaced 1,425 cu in (23.4 L) and had a compression ratio of 6.5 to 1. XI-1430 installations included a General Electric (GE) turbosupercharger and air-to-air intercooler. The engine initially had a takeoff rating of 1,350 hp (1,007 kW) at 3,300 rpm and a military rating of 1,600 hp (1,193 kW) at 3,200 rpm up to 25,000 ft (7,620 m). Development ultimately increased takeoff power to 1,600 hp (1,193 kW) at 3,300 rpm and 15.3 psi (1.05 bar) of boost. The XI-1430 maintained this power as its normal rating up to 25,000 ft (7,620 m), but at 3,000 rpm. Emergency power was 2,100 hp (1,566 kW) at 3,400 rpm with 28.5 psi (1.97 bar) of boost at 25,000 ft (7,620 m). The XI-1430 was 112.5 in (2.86 m) long, 30.9 in (.78 m) wide, and 33.5 in (.85 m) tall. The engine weighed 1,615 lb (733 kg).

On 20 February 1940, the AAC issued Request for Data R40-C that sought designs of new fighter aircraft capable of 450 mph (724 km/h), with 525 mph (845 km/h) listed as desirable. With a new generation of high-power aircraft engines under development, manufacturers saw it as an opportunity be creative. Five of the 26 submitted designs (some of which only offered slight variations) used the XI-1430 as the selected engine. Bell offered two XI-1430-powered variants of what was similar to a P-39 Airacobra, and two Curtiss-Wright XI-1430-powered submissions were similar to reengined examples of their CW-21 and XP-46. The later design was contracted mid-1940 as the XP-53. However, due to delays with the XI-1430 engine, the AAC requested the substitution of a Packard V-1650 (Merlin) in October 1940, and the XP-53 was subsequently redesignated as the XP-60.

A third XI-1430-powered R40-C proposal from Curtiss-Wright was a pusher aircraft designated P-249C. A design contract for the P-249C was issued on 22 June 1940, but the decision was made not to proceed with a prototype. Curtiss-Wright continued to refine the design and substituted an Allison V-1710 engine (this aircraft design was also an R40-C submission). The V-1710-powered aircraft was eventually built as the XP-55 Ascender. None of XI-1430-powered R40-C aircraft were built.

Continental-XI-1430-left-rear

The induction pipe can be seen extended from the bottom of the supercharger housing and to the inverted Vee between the cylinder banks. Note how the camshaft housing was attached to each individual cylinder.

In March 1940, the engines for the Lockheed XP-49 design were switched to the XI-1430 with a GE B-33 turbosupercharger. The XP-49 was not part of R40-C and was essentially an advancement of the P-38 Lightning. The Pratt & Whitney X-1800 / XH-2600 originally selected for the XP-49 was cancelled, necessitating a power plant switch. Lockheed began to modify the XP-49 for the XI-1430 engines.

In mid-1940, the AAC expressed interest in the XI-1430-powered Bell XP-52. The XP-52 was a twin-boom pusher fighter that never progressed beyond the initial design phase. The project ended in October 1940, before a contract was formalized.

For R40-C, McDonnell Aircraft Corporation proposed four variants of its Model 1 with different engines. None of the variants used the IX-1430. The Model 1 had its engine buried in the fuselage and drove wing-mounted pusher propellers via extensions shafts and right-angle gear boxes. Although radical, the AAC purchased engineering data and a wind tunnel model of the design. McDonnell worked with the AAC to refine the design, which eventually became the Model 2a. The Model 2a was powered by two XI-1430 engines, each with a GE D-23 turbosupercharger. On 30 September 1941, the Army Air Force (AAF—the AAC was renamed in June 1941) contracted McDonnell to build two prototypes of the aircraft as the XP-67.

Meanwhile, the XI-1430 was first run in late 1940 and underwent its first tests in January 1941. Plans were initiated to install the XI-1430 in a few P-39D aircraft, but the concept was ultimately dropped due to a lack of available engines. In July 1941, the AAF and the Defense Plant Corporation funded a new aircraft engine plant for Continental on Getty Street in Muskegon, Michigan that cost $5 million. It appeared as if the AAF truly believed that the XI-1430 would be a successful engine.

Continental-XI-1430-XP-49

The Lockheed XP-49 was obviously a development of the P-38, with the airframes sharing many common parts. However, the XP-49 as built offered no advantage over the P-38, and the aircraft was used mostly as an XI-1430 test bed.

On 22 April 1942, XI-1430 engines that were not fully developed were delivered to Lockheed in Burbank, California for installation in the XP-49. In May, the engine passed a preliminary test at 1,600 hp (1,193 kW). The XP-49 made its first flight on 11 November 1942, piloted by Joe Towle. That same month, the AAF ordered 100 I-1430 engines but required a type test to be passed before delivery. At the end of November, the XP-49 had more powerful engines installed capable of 1,350 hp (1,006 kW) for takeoff and 1,600 hp (1,193 kW) at 25,000 ft (7,620 m). The engines in the XP-49 proved to be troublesome and required constant maintenance, and the aircraft itself had numerous issues. The I-1430 was also having trouble passing the type test. Around August 1943, the AAF cut its order to 50 engines and later reduced the quantity again to 25. By September 1943, the XP-49 became essentially a testbed for the XI-1430, as the aircraft offered no advantage over the P-38. It was clear that the XP-49 would not go into production.

McDonnell had built a full-scale XP-67 engine nacelle for testing the XI-1430 engine installation. Tests were conducted by McDonnell starting in May 1943. After accumulating almost 27 hours of operation, the rig was sent to the National Advisory Committee for Aeronautics (NACA) at the Langley Memorial Aeronautical Laboratory (now Langley Research Center) in Virginia. The NACA added about 17.5 hours to the engine conducting tests to analyze the installation’s effectiveness for cooling the coolant, oil, and intercooler. The tests indicated that the cooling was insufficient. The nacelle with revised ducts was then shipped to Wright Field in Dayton, Ohio in October 1943. Wright field added another 6.5 hours to the engine, bringing the total to 51 hours. The new ducts proved satisfactory, and McDonnell was allowed to proceeded with XP-67 testing. However, excessive vibrations were noted between the engine and its mounting structure, and a more rigid mount was required to resolve the issue.

On 1 December 1943, the XP-67 had its XI-1430 engines installed and was ready for ground tests. However, both engines caught fire and damaged the aircraft on 8 December. The fire was caused by issues with the exhaust manifolds. By the end of 1943, the AAF had reduced the I-1430 order to just eight engines, signaling that the engine would not enter quantity production. The XP-67 was repaired and made its first flight on 6 January 1944, taking off from Scott Field in Belleville, Illinois. Test pilot Ed E. Elliott had to cut the flight to just six minutes due to both turbosuperchargers overheating, which resulted in small fires. The aircraft was again repaired, but engine and turbosupercharger issues continued to plague the program. The engines were only delivering 1,060 hp (790 kW), well below the expected output of 1,350 hp (1,007 kW).

Continental-XI-1430-underside-XP-67

Underside of an XI-1430-17 installed in the McDonnell XP-67 wing section for tests at the Langley Memorial Aeronautical Laboratory in September 1943. The tests were conducted to evaluate the cooling ducts of the XP-67’s radical blended design. Illustrated is the engine’s intake manifold and two coolant radiators. Note the generator and starter installed on the front accessory drive. The air-cooled jackets surrounding the engine’s exhaust manifolds are also visible. (LMAL image)

In March 1944, the I-1430 type test was partially completed, and the eight engines ordered by the AAF were delivered. At the time, the engine achieved an emergency power rating of 2,000 hp (1,491 kW) with water injection. Continental continued its efforts, and in August 1944, the I-1430 earned a rating of 2,100 hp (1,566 kW) with 150 PN fuel and no water injection.

On 6 September 1944, the exhaust valve rocker of the No. 1 cylinder in the XP-67’s right engine broke while the aircraft was in flight. Exhaust gases unable to escape the cylinder backed up into the induction manifold and caused it to fail, resulting in a fire. Test pilot Elliott was able to land the aircraft, but it was subsequently damaged beyond repair by the fire. This event effectively killed the XP-67, and the project was suspended seven days later on 13 September. All XI-1430 development was halted around this time.

The XP-49 had continued to fly when it could, but engine and airframe issues caused the aircraft to be grounded in December 1944. No longer of any useful service, the XP-49 was subsequently scrapped.

Continental-XI-1430-XP-67

The XP-67 had an impressive appearance with its nacelles and fuselage blended into the wings. However, the XI-1430 engines did not deliver their expected power, and the XP-67’s top speed was 405 mph (652 km/h), well below the expected 448 mph (721 km/h). The XP-67 originally had a guaranteed speed of 472 mph (760 km/h) at 25,000 ft (7,620 m) with a gross weight of 18,600 lb (8,437 kg). Once its weight had increased to 22,500 lb (10,206 kg), the expected speed was reduced to 448 mph (721 km/h).

Continental had investigated designs for XI-1430 engines with a two-speed supercharger, a two-stage and two-speed supercharger, contra-rotating propellers, a spur-gear-only propeller reduction, and turbocompounding with a turbine feeding power back to the crankshaft. Continental was to supply XI-1430 engines with a contra-rotating propeller shaft for the second XP-67. The engines were expected in June 1944, but no further information has been found.

Continental did work with General Electric on a turbocompound XI-1430 in 1943, and it appears detailed design work was undertaken. The XP-67 was used for performance calculations with a turbocompounded XI-1430 engine. The turbocompound engines decreased the time of a climb to 25,000 ft (7,620 m) by approximately 38 percent and increased range by 25 percent. The turbocompound XI-1430’s output was an additional 580 hp (395 kW). The engine with its power recovery turbine weighed an additional 235 lb (107 kg), but the total installation weight was only 30 lb (14 kg) additional because a turbosupercharger and its ducting was not needed. In February 1944, Materiel Command’s Engineering Division encouraged the completion of a turbocompound XI-1430 engine to test against the calculated performance estimates, but it does not appear that a complete engine was ever built.

Although the XI-1430 was lighter and more powerful than comparatively sized engines in production, it required additional development to become reliable. It was obvious that the engine would not see combat in World War II, and there was little point in continuing the program. A total of 23 XI-1430 engines were built, and at least four engines are known to survive. A -11 and a -15, are held by the Smithsonian Air and Space Museum, a -9 is on display at the National Museum of the U.S. Air Force, and a running -11 is part of a private collection.

Continental-XI-1430-left-right-NASM

The two XI-1430 engines held by the Smithsonian Air and Space Museum, with the -11 at top and the -15 at bottom. Both examples rotate counterclockwise (left-handed). The engines are currently in storage and not on display. (NASM images)

Sources:
Development of Aircraft Engines and Aviation Fuels by Robert Schlaifer and S. D. Heron (1950)
Continental! Its Motors and its People by William Wagner (1983)
Aircraft Engines of the World 1946 by Paul H. Wilkinson (1946)
Service Instructions for Aircraft Engines Army Models I-1430-9 and -11 By (20 May 1943)
Performance of the McDonnell XP-67 Airplane with XI-1430 Compound Engines and with Present XI-1430 Engines Using Continental Turbo Chargers by J. H. Gilmore, E. P. Kiefer, and H. D. Delameter (25 February 1944)
U.S. Experimental & Prototype Aircraft Projects: Fighters 1939-1945 by Bill Norton (2008)
American Secret Pusher Fighters of World War II by Gerald H. Balzer (2008)
Final Report on the XP-67 Airplane by John F. Aldridge, Jr. (31 January 1946)
Tornado: Wright Aero’s Last Liquid-Cooled Piston Engine by Kimble D. McCutcheon (2001)
– “Fabricated Crankcase Structure” U.S. patent 2,340,885 by James W. Kinnucan (filed 7 December 1940)
– “Cylinder Head” U.S. patent 2,395,712 by Carl F. Bachle (filed 12 January 1942)
– Accessory Mechanism and Drive for Aircraft Engines” U.S. patent 2,410,167 by James W. Kinnucan (filed 20 March 1942)
http://www.enginehistory.org/Collections/IV-1430/iv-1430.shtml
https://airandspace.si.edu/collection-objects/continental-hyper-i-1430-11-inverted-v-12-engine
https://airandspace.si.edu/collection-objects/continental-hyper-xi-1430-15-inverted-v-12-engine

Continental-O-1430-engine

Continental Hyper Cylinder and the O-1430 Aircraft Engine

By William Pearce

In the late 1920s, British engine expert Harry R. Ricardo hypothesized that the spark-ignition internal combustion engine with poppet valves had reached its specific power-producing zenith. The foundation for this belief was rooted in the fuel quality and technology employed at the time. Ricardo recommended that a single sleeve valve should replace the cylinder’s poppet valves and would enable the continued increase of an engine’s specific power output.

Continental-Hyper-Cylinder-No-2-sectional

Sectional drawing of the Continental Hyper No. 2 cylinder from August 1933. The domed exhaust valve is on the left. The domed piston had recesses to provide clearance for the valves.

British expatriate turned American citizen Sam D. Heron was also an engine expert and was employed at the time by the Army Air Corps (AAC) at Wright Field in Dayton, Ohio. Heron was involved in engine research, and with the approval of the AAC, he began to explore the power limits of the spark-ignition internal combustion cylinder with poppet valves. However, Heron had access to one thing that Ricardo did not consider: sodium-cooled exhaust valves.

Around 1923, Heron had developed an air-cooled cylinder for use on the Liberty V-12 engine. This cylinder had a 4.625 in (117 mm) bore, a 7.0 in (178 mm) stroke, and displaced 117.6 cu in (1.93 L). Around 1925, Heron developed the sodium-cooled exhaust valve. These valves had a hollow stem that was partially (approximately 2/3) filled with sodium. Once the valve reached 208° F (98° C), the sodium melted. The up-and-down movement of the valve sloshed the sodium in the valve. The sodium absorbed heat from the valve head, cooling it, and transferred the heat to the valve stem. The valve stem extended out of the cylinder and transferred the heat to the valve guide boss and subsequently to the cooling fins (if air cooled) or the water jacket (if water-cooled). The exhaust valve was a hot spot inside the cylinder that could cause detonation. Detonation is the spontaneous combustion of the remaining air and fuel mixture inside the cylinder prior to the flame front propagating from the spark plug, after it has fired, reaches that part of the cylinder. The sodium-cooled valve reduced the valve’s temperature, helping to prevent the possibility of detonation, and enabled the cylinder to produce more power.

Around 1930, Heron took the air-cooled Liberty cylinder with a sodium-cooled exhaust valve and converted it to water-cooling by adding a water jacket around the cylinder barrel. The cylinder was used on a single-cylinder test engine and quickly produced more power than the poppet valve limits described by Ricardo. At the time, an average aircraft engine cylinder produced a mean effective pressure (mep) of around 150 psi (10.3 bar). Using a single sleeve valve engine, Ricardo was able to achieve an mep of 450 psi (31.0 bar). Heron’s test cylinder was able to achieve an mep of 360 psi (24.8 bar) on its first run. Heron’s test cylinder was reworked, and an mep of 500 psi (34.5 bar) was ultimately recorded.

Continental-Hyper-Cylinder-No-2-side-bottom

Two views of the same Hyper No. 2 cylinder after its 49-hour test run in August 1933. The exhaust port is on the same side as the coolant pipe.

Encouraged by Heron’s test results, the AAC sought to develop a high-performance (Hyper) cylinder to be used on an aircraft engine. The cylinder kept the 4.625 in (117 mm) bore, but the stroke was reduced to 5.0 in (127 mm) to permit an engine speed of up to 3,400 rpm. With the change, the cylinder displaced 84.0 cu in (1.38 L). A proposed V-12 engine would incorporate 12 Hyper cylinders for a total displacement of 1,008 cu in (16.5 L) and a goal of producing 1,000 hp (746 kW). The AAC also desired a pressurized cooling system that ran straight ethylene glycol at 300° F (149° C). The then-current practice was to use normal water as the coolant, which limited the temperature to around 180° F (82° C). The high temperature was selected in an effort to decrease the size of the radiator needed in the aircraft. For proper cooling of a complete engine with the desired 300° F (149° C) coolant temperature, the AAC believed that individual cylinder construction would be required rather than six-cylinders together in a monobloc. However, an engine constructed with individual cylinders is less rigid than using monobloc construction, making the crankcase and cylinders prone to cracking when the engine is highly stressed. Individual cylinder construction also makes the engine heavier and longer, which increases torsional stresses on the crankshaft.

On 5 October 1932, a contract to develop the Hyper cylinder and design a complete 12-cylinder engine was issued to the Continental Motors Company. At the time, Continental built engines for a number of different automotive manufacturers and built medium-size air-cooled radial engines under their own name. Continental had also been contracted for experimental work on single sleeve valve engines by both the AAC and the US Navy.

Continental set up an office in Dayton, Ohio to work with Heron and the AAC regarding the design of the first test cylinder, Hyper No. 1. Continental built Hyper No. 1 to the AAC’s specifications at their main facility in Detroit, Michigan. Hyper No. 1 was constructed of a forged steel cylinder barrel screwed and shrunk into a cast aluminum head. A separate steel water-jacket was shrunk over the barrel and a shoulder of the head. The cylinder had a hemispherical combustion chamber with a single intake and a single sodium-cooled exhaust valve. The valves were actuated by an overhead camshaft via rockers. The rockers had a roller that rode on the camshaft and a pad that contacted the valve stem. Hyper No. 1 was first tested in early 1933 and soon produced 84 hp (63 kW) at 3,000 rpm, achieving the goal of producing 1 hp per cu in (.7 kW per 16 cc). However, there was some concern that a 1,008 cu in (16.5 L) engine producing 1,000 hp (746 kW) would be highly stressed, resulting in decreased reliability.

Continental-O-1430-drawing-1933

A drawing of the O-1430 included in U.S. patent 2,016,693 from October 1933 shows the engine’s basic layout. The cylinder appears to be nearly identical to that of Hyper No. 2, and the engine’s configuration matches what was ultimately built in 1938.

The AAC allowed Continental to develop a larger cylinder bore, resulting in Hyper No. 2. Hyper No. 2 had the bore increased by .875 in (22 mm) to 5.5 in (140 mm). This change increased the cylinder’s displacement by 34.8 cu in (.57 L) to 118.8 cu in (1.95 L). An engine with 12 Hyper No. 2 cylinders would displace 1,425 cu in (23.4 L), an increase of 417 cu in (6.8 L) over using Hyper No. 1 cylinders. Other AAC requirements, such as 300° F (149° C) coolant, individual cylinders, and a 1,000 hp (746 kW) output remained unchanged.

An endurance test report of Hyper No. 2 dated 3 August 1933 states that two cylinders were used for the test. The first cylinder failed due to cracks after 11 hours at 3,000 rpm and 9.8 psi (.68 bar) of boost. The second cylinder was run for 49 hours and produced 83 hp (62 kW) at 3,000 rpm with 6.9 psi (.48 bar) of boost. This gave an indicated mep of 211 psi (14.5 bar) and would enable a 12-cylinder engine to produce 1,000 hp (746 kW). However, the second cylinder also exhibited cracks at the end of the run, and numerous parts of both cylinders failed during or were worn out after the test. The report also states that the cylinder had a compression ratio of 5.9 to 1 and that the intake and exhaust valves were both sodium-cooled, but it is not clear if this was also the case with Hyper No. 1. The report includes a drawing of a piston listed as having a 5.75 to 1 compression ratio.

As testing of Hyper No. 2 was underway, serious discussions commenced regarding the design of a 12-cylinder engine. The AAC now wanted a flat (horizontally opposed cylinder) engine that could be installed in an aircraft’s wing and tasked Continental to build such an engine. The result was the O-1430, which utilized Hyper No. 2 cylinders. Sometimes the engine is referred to as OL-1430, for Opposed Liquid-cooled. It was assumed that a complete O-1430 engine would be built quickly and that the engine could be rapidly placed into service, with only a few years elapsing from design to production.

Continental-O-1430-mockup

Wooden mockup of the Continental O-1430 engine. The model was very detailed and closely matched the actual engine. The model survived and is in a private collection. Note the intake manifold and its individual runners atop the engine.

The Continental O-1430 was a horizontally opposed (flat-12 or 180° V-12) aircraft engine. The two-piece aluminum crankcase was split vertically at its center. Six individual steel cylinders were attached via studs to each side of the crankcase. As installed on the engine, the air and fuel mixture entered the cylinder via a port on the top side, and the exhaust gases were expelled via a port on the bottom side of the cylinder. A camshaft housing was attached atop all of the cylinders on each side of the engine. The single overhead camshaft for each cylinder bank was driven from the front of the engine via a shaft and bevel gears. A magneto was mounted to the rear of each camshaft. One magneto fired one spark plug in each cylinder, and the other magneto fired the other spark plug. The spark plugs were both positioned on the intake side of the cylinder and flanked the intake port. The pistons were connected to the crankshaft via fork-and-blade connecting rods.

At the front of the engine was an accessory drive and propeller gear reduction. A double set of spur gears enabled the reduction and kept the propeller shaft on the same axis as the crankshaft. A gear reduction of .455 or .556 could be fitted without any modification to the reduction housings. Additionally, the accessory drive was designed so that swapping two gears would reverse the rotation of the accessory drive shaft relative to the crankshaft. In other words, the setup enabled the accessories to be driven in the same direction whether the crankshaft rotated clockwise or counterclockwise. There was no need for special accessories or gearsets when the engine was installed in handed operation. Reversing the relative positions of the starter and generator mounted to the sides of the front accessory drive and flipping their common drive shaft enabled those units to operate regardless of the clockwise or counterclockwise rotation of the crankshaft.

Continental-O-1430-engine-top

Top view of the complete O-1430 engine shows the accessory section at the front of the engine with the starter and generator. Note the camshaft drives and the leads from the magnetos to the spark plugs.

A downdraft carburetor was positioned at the extreme rear of the O-1430 engine. It fed air and fuel into the single-speed, single-stage supercharger, which was mounted to the rear of the engine. The supercharger impeller was 10.5 in (267 mm) in diameter and turned at 6.45 times crankshaft speed. An intake manifold led from the supercharger and sat atop the engine. Individual runners branched off the manifold and supplied the air and fuel mixture to each cylinder. A water pump with two outlets, one for each cylinder bank, was driven from the bottom of the supercharger drive housing.

The O-1430 had a 5.5 in (140 mm) bore and a 5.0 in (127 mm) stroke. The engine displaced 1,425 cu in (23.4 L) and had compression ratio of 6.1 to 1. Takeoff power was 1,150 hp (858 kW) at 3,150 rpm, and continuous power was 1,000 hp (746 kW) at 3,000 rpm up to 25,000 ft (7,620 m). The O-1430 was 104.5 in (2.65 m) long, 44.3 in (1.13 m) wide, and 24.2 in (.61 m) tall. The engine weighed 1,300 lb (590 kg).

Construction of the O-1430 was delayed by the development of the Hyper No. 2 cylinder. Almost all of the time from 1932 to 1938 was spent on refining the cylinder’s design. The AAC wanted the cylinder to be fully developed before the complete engine was built, and it took Continental years to fully satisfy the AAC’s requirements. Cracks in the cylinder were a constant issue as Hyper No. 2 was developed. Additionally, Continental seemingly did not want to spend any of its own money on the cylinder or engine, even though the company would eventually be reimbursed by the AAC. Rather, Continental sent each change and every purchase through the AAC for contractual approval. While this funding bottleneck severely slowed work, Continental was struggling financially in the Depression era. In addition, Continental believed that the engine would not be suitable for commercial use and that it would only power fighter aircraft. They felt that a fighter engine would not offer a significant return on any money that they invested into the project. At the same time, the AAC had very limited funds available for the experimental engine project.

Continental-O-1430-engine

Although the O-1430 achieved its desired output of 1,000 hp (746 kW), its protracted development rendered the engine obsolete. Had it been completed in 1935, the O-1430 may have found an application and been put into production.

The O-1430 was finally completed and run in 1938. This was about two years past the AAC’s originally envisioned timeline for the engine to be in production and powering various aircraft. The engine passed a 50-hour development test at 1,000 hp (746 kW) in April 1939. By this time, the concept of installing a flat engine in the wing of a fighter had fallen out of favor, as a fighter’s wings were too thin to house such an engine. In addition, a 1,000 hp (746 kW) engine was not powerful enough for fighters under development. The Allison V-1710 and the Rolls-Royce Merlin had both passed more stringent tests and produced more power years prior. In addition, Allison had convinced the AAC that 250° F (121° C) coolant was just as, if not more, efficient as 300° F (149° C) coolant. At 300° F (149° C), a lot of heat is transferred into the oil, necessitating a larger oil cooler. A larger radiator is needed at 250° F (121° C), but the oil cooler can be smaller, resulting in the same overall drag of the comparative cooling systems. Furthermore, the engine and all surrounding components and accessories lasted longer at the lower temperature. It was also found that pure ethylene glycol did not transfer heat as well as a 50/50 mixture of water and ethylene glycol.

A redesign of the O-1430 was offered in which the engine would be altered into a compact Vee configuration. With recent advancements, such as increased supercharging and better fuels, it was believed that the redesigned engine could be made to produce 1,600 hp (1,193 kW) and would be well suited for fighter aircraft. The engine was subsequently redesigned as an inverted V-12. It was officially designated as the Continental XIV-1430 and later became the XI-1430. Work on the O-1430 was halted.

On 11 September 1939, the AAC issued Request for Data R40-A seeking an 1,800–2,400 hp (1,342–1790 kW) engine for installation in a bomber’s thick wing. Continental proposed doubling the O-1430 to create the 24-cylinder XH-2860. This was the same thing Lycoming had done with its O-1230 when creating the XH-2470. However, the Continental XH-2860 did not find favor with the AAC, and the engine never proceeded beyond the preliminary design phase. The decision against the XH-2860 was based in part to allow Continental to focus on developing the XI-1430.

Continental-XI-1430-left-right

The XI-1430 was the final development of the O-1430 and Hyper cylinder program. Although the engine exhibited impressive performance, achieving 2,100 hp (1,566 kW) in August 1944, it had reliability issues and came too late to have any impact in World War II.

Sources:
Development of Aircraft Engines and Aviation Fuels by Robert Schlaifer and S. D. Heron (1950)
Report of 49-Hour Endurance Test of Continental “Hyper” Engine No. 2 by R. N. DuBois (3 August 1933)
Continental! Its Motors and its People by William Wagner (1983)
Tornado: Wright Aero’s Last Liquid-Cooled Piston Engine by Kimble D. McCutcheon (2001)
– “Engine Support” U.S. patent 2,016,693 by Norman N. Tilley (filed 2 October 1933)
– “Reversible Accessory Driving Mechanism for Engines” U.S. patent 2,051,568 by Harold E. Morehouse (filed 7 June 1935)
– “Reversible Starter and Generator Drive for Engines” U.S. patent 2,053,354 by Norman N. Tilley (filed 7 June 1935)
http://www.enginehistory.org/Piston/HOAE/Continental2.html

Yokosuka YE2H front

Yokosuka YE2H (W-18) and YE3B (X-24) Aircraft Engines

By William Pearce

After World War I, the Japanese Navy established the Aircraft Department of the Hiro Branch Arsenal, which was part of the Kure Naval Arsenal. These arsenals were located near Hiroshima, in the southern part of Japan. The Aircraft Department was the Japanese Navy’s first aircraft maintenance and construction facility. In April 1923, the Hiro Branch Arsenal became independent from the Kure Naval Arsenal and was renamed the Hiro Naval Arsenal (Hiro).

Kawanishi E7K1 floatplane

The Kawanishi E7K1 floatplane served into the 1940s and was powered by the Hiro Type 91 W-12 engine. The Type 91 was based on the Lorraine 12Fa Courlis.

In 1924, the Japanese Navy purchased licenses from Lorraine-Dietrich in France to manufacture the company’s 450 hp (336 kW) 12E aircraft engine. The Lorraine 12E was a liquid-cooled, W-12 aircraft engine, and Hiro was one of the factories chosen to produce the engine. Hiro manufactured three different versions of the Lorraine engine, appropriately called the Hiro-Lorraine 1, 2, and 3. In the late 1920s, Hiro started designing its own engines derived from the Lorraine architecture. Hiro also produced engines based on the updated Lorraine 12Fa Courlis W-12. It is not clear if Hiro obtained a license to produce the 12Fa or if the production was unlicensed. The most successful of the Hiro W-12 engines was the 500–600 hp (373–447 kW) Type 91, which was in service until the early 1940s. Modeled after the 12Fa Courlis, the Type 91 had a bank angle of 60-degrees and four valves per cylinder. The engine had a 5.71 in (145 mm) bore, a 6.30 in (160 mm) stroke, and displaced 1,935 cu in (31.7 L).

Like Lorraine, Hiro also produced W-18 engines. Hiro’s first W-18 engine was built in the early 1930s and used individual cylinders derived from the type used on the 12Fa Courlis / Type 91. While Hiro’s W-18 engine may have been inspired by the Lorraine 18K, the engine was not a copy of any Lorraine engine. Reportedly, Hiro’s first W-18 had a 60-degree bank angle between its cylinders. The engine did not enter production and was superseded in 1934 by the Type 94. The Type 94 replaced the earlier engine’s individual cylinders with monobloc cylinder banks and used a 40-degree angle between the banks. The W-18 engine had a 5.71 in (145 mm) bore and a 6.30 in (160 mm) stroke. The Type 94 displaced 2,902 cu in (47.6 L) and produced 900 hp (671 kW) at 2,000 rpm. The engine was 86 in (2.18 m) long, 44 in (1.11 m) wide, 43 in (1.10 m) tall, and weighed 1,631 lb (740 kg). Only a small number of Type 94 engines were produced, and its main application was the Hiro G2H long-range bomber, of which eight were built. The engine was found to be temperamental and unreliable in service.

Hiro G2H1 bomber

The Hiro G2H1 bomber was the only application for the company’s Type 94 W-18 engine. The engine was problematic, and only eight G2H1s were built. Note the exhaust manifold for the center cylinder bank.

By the mid-1930s, the Navy’s aircraft engine development had been transferred from Hiro to the Yokosuka Naval Air Arsenal (Yokosuka). For a few years, the Navy and Yokosuka let aircraft engine manufacturers develop and produce engines rather than undertaking development on its own. However, around 1940, Yokosuka began development of a new W-18 aircraft engine, the YE2.

The Yokosuka YE2 was based on the Hiro Type 94 but incorporated many changes. The liquid-cooled YE2 had an aluminum, barrel-type crankcase, and its three aluminum, monobloc cylinder banks were attached by studs. The cylinder banks had an included angle of 40 degrees and used crossflow cylinder heads with the intake and exhaust ports on opposite sides of the head. All of the cylinder banks had the intake and exhaust ports on common sides and were interchangeable.

Each cylinder had two intake and two exhaust valves, all actuated by a single overhead camshaft. The camshaft for each cylinder bank was driven via a vertical shaft from an accessory section attached to the drive-end of the engine. The YE2 had a 5.71 in (145 mm) bore, 6.30 in (160 mm) stroke, and displaced 2,902 cu in (47.6 L). The YE2A, B, and C variants had a rated output of 1,600 hp. However, very little is known about these engines, and it is not clear if they were all built.

Yokosuka YE2H front

The Yokosuka YE2-series was developed from the Hiro Type 94. The YE2H was built in the early 1940s, but no applications for the engine have been found. Note the output shaft on the front of the engine that is bare of its extension shaft. The vertical fuel injection pump is just above the horizontally-mounted magnetos. (Smithsonian Air and Space Museum image)

The Yokosuka YE2H variant was developed around 1942 and given the Army-Navy designation [Ha-73]01. It is not clear how the YE2H differed from the earlier YE2 engine. The YE2H was intended for installation in an aircraft’s fuselage (or wing) in a pusher configuration. The rear-facing intake brought in air to the engine’s supercharger. Air from the supercharger was supplied to the cylinders at 12.6 psi (.87 bar) via three intake manifolds—one for each cylinder bank. A common pipe at the drive-end of the engine connected the three intake manifolds to equalize pressure. Fuel was then injected into the cylinders via the fuel injection pump driven at the drive-end of the engine. The two spark plugs per cylinder were fired by magnetos, located under the fuel injection pump. An extension shaft linked the engine to a remote gear reduction unit that turned the propeller at .60 times crankshaft speed.

The YE2H had a maximum output of 2,500 hp (1,864 kW) at 3,000 rpm. The engine had power ratings of 2,000 hp (1,491 kW) at 2,800 rpm at 4,921 ft (1,500 m) and 1,650 hp (1,230 kW) at 2,800 rpm at 26,247 ft (8,000 m). The YE2H was approximately 83 in (2.10 m) long, 37 in (.95 m) wide, and 39 in (1.00 m) tall. The engine weighed around 2,634 lb (1,195 kg). The YE2H was completed and run around March 1944, but development of the engine had tapered off in mid-1943. At that time, Yokosuka refocused on the YE3 engine, which was derived from the YE2H.

Yokosuka YE2H side

The YE2H’s rear-facing intake scoop (far left) indicates the engine was to be installed in a pusher configuration. Note the intake manifolds extending from the supercharger housing. (Smithsonian Air and Space Museum image)

Development of the Yokosuka YE3 started in the early 1940s. The engine possessed the same bore and stroke as the YE2, but the rest of the engine was redesigned. The YE3 was an X-24 engine with four banks of six cylinders. The left and right engine Vees had a 60-degree included angle between the cylinder banks, which gave the upper and lower Vees a 120-degree angle. The YE3’s single crankshaft was at the center of its large aluminum crankcase.

Each cylinder bank had dual overhead camshafts actuating the four valves in each cylinder. The camshafts were driven off the supercharger drive at the non-drive end of the engine. The supercharger delivered air to the cylinders via two loop manifolds—one located in each of the left and right engine Vees. Two fuel injection pumps provided fuel to the cylinders where it was fired by two spark plugs in each cylinder. The fuel injection pumps and magnetos were driven from the drive end of the engine. Exhaust was expelled from the upper and lower engine Vees. Like the YE2, the YE3 was designed for installation in an aircraft’s fuselage or wing, with an extension shaft connecting the engine to the remote propeller gear reduction.

Yokosuka YE3B front

The drive end of the Yoskosuka YE3B gives a good view of the engine’s X configuration. The fuel injection pumps are below the output shaft. (Larry Rinek image via the Aircraft Engine Historical Society)

The YE3A preceded the YE3B, but it is not clear if the YE3A was actually built. The Yokosuka YE3B was given the joint Army-Navy designation [Ha-74]01. The YE3B had a 5.71 in (145 mm) bore and a 6.30 in (160 mm) stroke. The engine displaced 3,870 cu in (63.4 L) and produced 2,500 hp (1,864 kW). The YE3B was rated at 2,150 hp (1,603 kW) at 6,562 ft (2,000 m) and 1,950 hp (1,454 kW) at 16,404 ft (5,000 m). The engine was approximately 79 in (2.00 m) long, 43 in (1.10 m) wide, and 28 in (.70 m) tall.

The YE3B was run by October 1943. The engine used a two-speed remote gear reduction that drove contra-rotating propellers. No real applications for the YE3B are known. However, the engine is often listed as the powerplant for the S-31 Kurowashi (Black Eagle), which was a purely speculative propaganda aircraft. The S-31 was designed as a heavy bomber, and its four YE3B engines were buried in its fuselage.

Yokosuka-YE3B-NASM-2010-TF-1

Side view of the YE3B illustrates the engine’s loop intake manifold. Spark plug leads and fuel injector lines can be seen in the Vee between the cylinder banks. Note the camshaft-driven water pump mounted on the end of the lower cylinder bank. (Tom Fey image)

A further development of the YE3-series was the YE3E. The YE3E was given the joint Army-Navy designation [Ha-74]11. The engine was similar to the earlier YE3-series except that it had two crankshafts. Some sources indicate the engine essentially consisted of two V-12s laid on their sides in a common crankcase with their crankshafts coupled to a common output shaft. The YE3E produced 3,200 hp (2,386 kW) and had power ratings of 2,650 hp (1,976 kW) at 4,921 ft (1,500 m) and 2,200 hp (1,641 kW) at 26,247 ft (8,000 m). The YE3E was approximately 79 in (2.00 m) long, 51 in (1.30 m) wide, and 39 in (1.00 m) tall. The engine was scheduled for completion in spring 1944, but no records have been found indicating it was finished.

A YE2H [Ha-73]01 W-18 engine and a YE3B [Ha-74]01 X-24 engine were captured by US forces after World War II. The engines were sent to Wright Field in Dayton Ohio for further examination. The United States Air Force eventually gave the YE2H and YE3B engines to the Smithsonian National Air and Space Museum, where they are currently in storage.

Yokosuka-YE3B-NASM-2010-TF-2

Detail view of the supercharger mounted to the end of the YE3B. Note the updraft inlet for the supercharger. Camshaft drives can be seen extending from the supercharger housing to the cylinder banks. (Tom Fey image)

Sources:
Japanese Aero-Engines 1910–1945 by Mike Goodwin and Peter Starkings (2017)
https://airandspace.si.edu/collection-objects/yokosuka-naval-air-arsenal-ye2h-ha-73-model-01-w-18-engine
https://airandspace.si.edu/collection-objects/yokosuka-naval-air-arsenal-ye3b-ha-74-model-01-x-24-engine
http://www.enginehistory.org/Piston/Japanese/japanese.shtml
Japanese Secret Projects 1 by Edwin M. Dyer III (2009)

Lorraine 12Fa

Lorraine-Dietrich ‘W’ Aircraft Engines

By William Pearce

In the early 1900s, Lorraine-Dietrich was a French manufacturer of wagons, rail equipment, and automobiles. During World War I, the company’s factory in Argenteuil, France started manufacturing aircraft engines under the name “Lorraine.” The Argenteuil factory was led by Marius Barbarou, the engineer that designed the aircraft engines.

Lorraine 12F

The Lorraine 12F of 1919 was the first of the company’s W-12 engines and followed the design outlined in the 1918 patent. Note the exposed pushrods and enclosed valves.

By 1918, Lorraine had developed aircraft engines in the form of an inline-six, a V-8, and a V-12. However, Barbarou began to experiment with engines of a W configuration. The W (or broad arrow) engine configuration had the benefit of being more rigid and slightly lighter than a comparable V-12, with the drawback of being slightly taller and wider. On 5 June 1918, Lorraine (under Barbarou) applied for a patent in which the benefits of a W engine with either four, six, or eight cylinders per bank was described. While the British Napier Lion W-12 was being developed at the same time, the patent illustrates that the Lorraine W engines were a parallel development and not a copy of the Lion. French patent 504,772 was awarded on 22 April 1920 for the W engine design.

The first generation of Lorraine’s W engines was designed around 1918 and known as the 12F (many sources do not give a designation for this engine, and “12F” was used again). The liquid-cooled, 12-cylinder engine consisted of a two-piece aluminum crankcase that was split horizontally along the crankshaft’s axis. Three banks of cylinders were mounted atop the crankcase, and the left and right banks were angled 60 degrees from the center, vertical bank. Each cylinder bank had two pairs of two cylinders. Each pair of steel cylinders was surrounded by a welded steel water jacket. Atop each cylinder was a single intake valve and a single exhaust valve. The enclosed valves were each actuated by a partially exposed rocker and a fully exposed pushrod. All of the pushrods were controlled by two camshafts—one positioned in each Vee between the cylinder banks. The push rods that controlled the exhaust valves for the left and right cylinder banks had a lower roller rocker that followed the camshaft.

A single-barrel updraft carburetor was positioned on the outer side of the right cylinder bank. An intake pipe led from the carburetor, passed between the two cylinder pairs of the right bank, and joined a manifold. The manifold split into four branches that fed each of the cylinders on the right bank. Employing a similar configuration, a two-barrel carburetor on the left side of the engine fed both the left and center cylinder banks. Each cylinder had two spark plugs that were fired by two magnetos located at the rear of the engine. The left magneto fired the spark plugs on the intake side of the cylinders, and the right magneto fired the exhaust-side spark plugs.

Lorraine 24G

With a new crankcase, crankshaft, and camshafts, the 24-cylinder 24G of 1919 was more than just two 12F engines coupled together. Note the ignition system driven from the propeller shaft.

The flat-plane crankshaft had four throws and was supported by three main bearings. A master connecting rod was attached to each crankpin. The master rods were connected to the aluminum pistons in the vertical cylinder bank. Articulated rods connected the pistons in the left and right cylinder banks to the master connecting rods. The engine had a compression ratio of 5.2 to 1. The propeller was attached directly to the crankshaft without any gear reduction. The Lorraine 12F had a 4.96 in (126 mm) bore and a 7.09 in (180 mm) stroke. The W-12 engine displaced 1,826 cu in (29.9 L) and produced 500 hp (372 kW) at 1,600 rpm. The 12F weighed 960 lb (435 kg).

While work on the 12F was underway, a 24-cylinder engine was designed that was basically two 12Fs. The W-24 engine was designated 24G (many sources do not give a designation for this engine, and a different G-series emerged later). Other than having twice the number of cylinders, the main change from the 12F was that the ignition system was driven at the front of the engine. The 12G’s eight throw crankshaft was supported by five main bearings. The W-24 engine displaced 3,652 (59.9 L) and produced 1,000 hp (746 kW) at 1,600 rpm. The direct drive engine weighed 1,874 lb (850 kg), and it was estimated that a 16 ft 5 in (5 m) propeller would be needed to harness its power.

The 12F and 24G engines were built during 1919 and displayed at the Salon de Paris in December of that year. There is some indication that the valve arrangement was problematic at high engine speeds, but the engines were displayed at the next two Salons in November 1921 and December 1922. No applications are known for the 12F or the 24G, which were too large for almost all aircraft. It is unlikely that more than a few of these engines were built.

Lorraine 12Eb no mags

A direct-drive 12E-series engine with exposed valves and overhead camshafts. Unseen are the magnetos positioned at the rear of the engine.

While enduring the rough start with the first generation of W engines, Barbarou had already designed the second generation—starting with the 12E-series. The first engine in this series was the 12Ew, which was derived from the 370 hp (276 kW) Lorraine 12D (V-12) and conceived to fill the power gap between that engine and the 500 hp (373 kW) 12F. The 12Ew was similar in layout to the 12F, but had a completely different valve arrangement. The exposed valves for each cylinder bank were actuated via rockers by a single overhead camshaft. The camshaft was driven by the crankshaft via bevel gears and a vertical shaft at the rear of the engine. It appears that the two magnetos were initially located at the front of the engine but later relocated to the rear of the engine. The engine had a compression ratio of 5.5 to 1. The propeller was attached directly to the crankshaft without any gear reduction.

The Lorraine 12Ew had a 4.72 in (120 mm) bore and a 7.09 in (180 mm) stroke. The engine displaced 1,491 cu in (24.4 L) and produced 420 hp (313 kW) at 1,800 rpm. The 12Ew was 54.1 in (1.37 m) long, 47.6 in (1.21 m) wide, and 44.8 in (1.14 m) tall. The engine weighed around 860 lb (390 kg). The 12Ew was first run around late 1919, but development was slowed due to work on other engines and other projects. The 12Ew was used in a few aircraft, and the engine was developed into the 12Eb.

The Lorraine 12Eb was dimensionally the same as the 12Ew, but it had a compression ratio of 6.0 to 1 and produced 450 hp (336 kW) at 1,850 rpm. The engine weighed 822 lb (373 kg). The 12Eb was first run in late 1922 or early 1923, and 30 test engines were built in 1923. The 12Eb quickly proved itself to be a successful engine. In March 1924, the 12Eb was the most economic engine at an endurance competition (Concours de Moteurs de Grande Endurance) held at Chalais-Meudon, near Paris. The engine operated for a total of 410 hours at 1,850 rpm. During that time, three cylinders were replaced due to water leaks.

Lorraine 12Eb museaum

A 12Eb engine with the magnetos driven from the front of the engine. Power from the magnetos was taken to the distributors, which were driven by the back of the left and right cylinder bank camshafts. (Pline image via Wikimedia Commons)

12Eb production started in late 1924, and approximately 150 engines were built in 1925. From 1924 to 1927, a number of licenses were purchased by other countries to manufacture the 12Eb: CASA and Elizalde in Spain; SCAT in Italy; FMA in Argentina; Hiro, Nakajima, and Aichi in Japan; PZL in Poland; Škoda and ČKD in Czechoslovakia; and IAR in Romania. The Blériot-SPAD S.61 fighter, the Breguet 19 light bomber, and the Potez 25TOE reconnaissance bomber were the 12Eb’s primary applications.

In 1925, a geared version of the 12Eb was developed, and it was designated 12Ed (sometimes referred to as 12Ebr). The planetary gear reduction turned the propeller at .647 times crankshaft speed. At 59.9 in (1.52 m), the 12Ed was 5.8 in (.15 m) longer than the direct-drive engine. Engine weight also increased 86 lb (39 kg) to 908 lb (412 kg). The 12Ed produced the same 450 hp (336 kW), but this was achieved at 1,900 engine rpm and 1,226 propeller rpm. The main application for the 12Ed was the CAMS 37 reconnaissance flying boat.

Lorraine 12Ed

The 12Ed engine with a propeller gear reduction was the same basic engine as the 12Eb. The early engines had a smooth gear reduction housing, but ribs were added later for extra strength.

The 12Ee debuted in 1926. This engine was basically a 12Eb with its compression ratio increased to 6.5 to 1. The 12Ee produced 480 hp (358 kW) at 2,000 rpm and had a maximum output of 510 hp (380 kW). The engine weighed 846 lb (383 kg). The 12E-series engines were used in the FBA-21 flying boat and Villiers IV seaplane to set numerous seaplane payload and distance records. Lorraine built around 5,500 E-series W-12 engines, and licensed production added another 1,775, for a total of approximately 7,275 engines. In all, the 12E-series engines were used in around 24 countries.

In December 1926, a Lorraine W-18 engine was displayed at the salon de l’Aviation in Paris. The 18-cylinder engine was designated 18K, and it was based on the E-series. The engine had been under development by Barbarou since at least 1923. The 18K had individual cylinders, rather than the paired units used on the E-series. The cylinder banks had an included angle of 40 degrees. Each of the cylinder banks had two carburetors, with each carburetor feeding three cylinders. Otherwise, the induction system was similar to that used on the 12E, including the two barrel carburetors on the left side of the engine for the left and center cylinder banks. The 18K had a compression ratio of 6.0 to 1, and its crankshaft was supported by seven main bearings.

The Lorraine 18K had the same 4.72 in (120 mm) bore and a 7.09 in (180 mm) stroke as the 12E-series engines. The W-18 engine displaced 2,236 cu in (36.6 L) and weighed around 1,287 lb (584 kg). The 18Kb was the direct drive variant that produced 650 hp (485 kW) at 2,000 rpm. The engine was 79.2 in (2.01 m) long, 36.2 in (.92 m) wide, and 43.3 in (1.10 m) tall.

Lorraine 18K

The 18K engine had the same construction as the 12E engines but used individual cylinders. Note that each carburetor fed two inductions pipes—one supplied the left cylinder bank and the other the center bank. The two one-piece magneto/distributor units are driven from the camshaft drive.

A version with a propeller gear reduction was designated 18Kd. The 18Kd turned the propeller at .647 times crankshaft speed and produced up to 785 hp (585 kW) at 2,500 rpm, but its continuous rating was the same as the 18Kb. With a total length of 83.5 in (2.12 m), the 18Kd was 4.3 in (109 mm) longer than the direct drive variant. The 18Kd weighed 1,365 lb (619 kg).

The 18Kd underwent official trials in mid-February 1927, and it was selected for the single-engine Amiot 122 bomber. The 18K may have been installed in other prototype aircraft, but the Amiot 122 was its only production application. A total of approximately 100 18Kb and 18Kd engines were made, and it was not considered a commercial success.

In 1928, Barbarou and Lorraine developed the third generation of W-12 engines, known as 12Fa Courlis. This was a reuse of the “12F” designation that was first applied in 1918. The F-series Courlis engines had a crankcase similar to that of the E-series, but the cylinder bank was a monobloc aluminum casting with enclosed valves. The steel cylinder liners were screwed into the cylinder banks, and the engine’s compression ratio was 6.0 to 1. Compared to the 12E, the cylinder bore diameter was increased, and the stroke length was decreased. Each cylinder had two intake and two exhaust valves, all actuated by a single overhead camshaft. The intake and exhaust ports were on the same side of the cylinder bank, and the carburetors mounted directly to the cylinder bank. The crankshaft was supported by five main bearings.

The Lorraine 12Fa Courlis had a 5.71 in (145 mm) bore and a 6.30 in (160 mm) stroke. The engine displaced 1,944 cu in (31.7 L) and produced 600 hp (447 kW) at 2,000 rpm. Sources indicate that the engine was capable of 765 hp (570 kW) at 2,400 rpm. Without gear reduction, the 12Fa Courlis was 62.2 in (1.66 m) long, 44.9 in (1.14 m) wide, 41.7 in (1.06 m) tall, and weighed 933 lb (423 kg). While the .647 propeller gear reduction did not increase the engine’s length by any noteworthy value, it did add 59 lb (27 kg), resulting in a weight of 992 lb (450 kg).

Lorraine 12Fa

With its enclosed valves and monobloc cylinder banks, the 12Fa Courlis was a modern engine design when it appeared in 1929. The gear reduction mounted to the crankcase in place of the direct-drive propeller shaft housing. The rest of the engine, including the crankshaft, was the same between the direct drive and geared variants.

The 12Fa Courlis was first run around 1928 and was tested by the Ministére de l’Air (French Air Ministry) from 10 to 17 June 1929. During the test, 52 hours were run at 2,000 rpm. In July 1929, the 12Fa made its public debut at the Olympia Aero Show in London. The French authorities officially approved the engine for service on 21 August 1929. The 12Fa was installed in a Potez 25 for engine development tests, which were conducted in 1930.

Developed in 1930, the 12Fb Courlis had a simplified induction system compared to the 12Fa. The 12Fb Courlis had a single, three-barrel carburetor mounted at the rear of the engine. Three separate intake manifolds extended from the carburetor, with one manifold connecting to each cylinder bank. The engine had cross-flow cylinder heads, with the exhaust ports on the side opposite of the intake ports. The 12Fb had the same basic specifications as the 12Fa, but fuel delivery issues initially reduced its rating to 500 hp (372 kW) at 1,900 rpm. However, continued development of the 12Fb soon brought its power up to 600 hp (447 kW) at 2,000 rpm, the same as the 12 Fa. Although installed in a few prototypes, the 12Fb did not power any production aircraft. By the early 1930s, air-cooled radial engines were increasing in popularity for transports and liquid-cooled V-12 engines for fighters. The Lorraine F-series Courlis did not find the success of the E-series. Around 30 F-series Courlis engines were built.

Lorraine 12Fb

The 12Fb had a simplified induction system with one carburetor and three intake manifolds. However, unequal fuel distribution was an issue.

Around 1932, an updated 12Eb was designed that incorporated some features from the 12F-series. Designated 12E Hibis, the engine used aluminum four-valve heads similar to those employed on the 12F engines. The Hibis had a 4.80 in (122 mm) bore and a 7.09 in (180 mm) stroke. The engine’s total displacement was 1,541 cu in (25.3 L), and it produced 500 hp (373 kW) at 2,000 rpm. While the engine was proposed around 1932, it is not clear if any were actually produced. The Hibis had disappeared by 1934.

In 1930, Barbarou created the 18-cylinder Lorraine 18Ga Orion. This W-18 engine combined the configuration of the 18K and the improved construction techniques of the F-series Courlis engines. The 18Ga had three monobloc cylinder banks set at 40 degrees. Each bank had six cylinders with a single overhead camshaft that operated the four valves per cylinder. The left and right cylinder banks had their intake and exhaust ports on their outer side. The carburetors were also mounted directly to the outer side of the cylinder bank. The center cylinder banks had a crossflow head with the carburetor and intake ports on the left side and the exhaust port on the right side. The crankshaft was supported by seven main bearings, and the engine had a .647 planetary gear reduction. It does not appear that there was a direct-drive variant.

Lorraine 18Ga

The 18Ga Orion combined the 18-cylinder 18K engine with the modern construction of the 12F-series. Note that the outer cylinder banks have intake and exhaust ports on the same side, while the center cylinder bank has intake and exhaust ports on opposite sides.

The 18Ga Orion had a 4.92 in (125 mm) bore and a 7.09 in (180 mm) stroke. The engine displaced 2,426 cu in (39.8 L) and produced 700 hp (522 kW) at 2,100 rpm and 870 hp (649 kW) at 2,500 rpm. The W-18 engine was 83.1 in (2.11 m) long, 36.6 in (.93 m) wide, and 43.7 in (1.11 m) tall. The engine weighed 1,252 lb (568 kg). The 18Ga completed a 50-hour type test prior to its public debut at the salon de l’Aviation in Paris in November 1930. The engine was used in at least one prototype aircraft, the Amiot 126 bomber. The 18Ga did not enter production, and only around 10 engines were built.

In November 1934, a supercharged version of the 18G Orion was displayed at the salon de l’Aviation in Paris. An updraft carburetor fed the gear-driven, centrifugal supercharger that was mounted to the rear of the engine. Three intake manifolds delivered the air and fuel mixture to the cylinder banks, just like the 12Fb engine. The revised cylinder banks included four valves per cylinder that were actuated by dual overhead camshafts. Each camshaft pair was driven by a vertical shaft at the rear of the engine. The supercharged 18G produced 1,050 hp (783 kW) at 2,150 rpm, but no additional specifications have been found.

A few 12E-series engines are preserved in various museum. No Lorraine F-series, 18-cylinder, or 24-cylinder engines are known to exist.

Lorraine 18G supercharged

The supercharged 18G Orion that was debuted in November 1934. Note the appearance of the new cylinder banks, which included four valves per cylinder.

Sources:
Lorraine-Dietrich by Sébastien Faurès Fustel de Coulanges (2017)
Aerosphere 1939 by Glenn D. Angle (1940)
Les Moteurs a Pistons Aeronautiques Francais Tome I by Alfred – Bodemer and Robert Laugier (1987)
Le moteur Lorraine 12 Eb de 450 ch by Gérard Hartmann (undated)
Moteur “Lorraine” 450 C.V. 12 Cylinders en W by Société Lorraine (circa 1925)
Les Moteurs Lorraine by Société Générale Aéronautique (circa 1932)
Moteur “Lorraine” 600 CV (Type 12 Fa.) by Société Lorraine (10 November 1929)

Pratt Whitney R-2060 Yellow Jacket

Pratt & Whitney R-2060 ‘Yellow Jacket’ 20-Cylinder Engine

By William Pearce

Around 1930, the United States Army Air Corps (AAC) was interested in a 1,000 hp (746 kW), liquid-cooled aircraft engine. Somehow, the AAC persuaded Pratt & Whitney (P&W) to develop an experimental engine at its own expense to meet this goal. The engine was the R-2060 Yellow Jacket, and it carried the P&W experimental engine designation X-31. The “Yellow Jacket” name followed the “Wasp” and “Hornet” engine lines from P&W.

Pratt Whitney R-2060 Yellow Jacket

The Pratt & Whitney R-2060 Yellow Jacket was an experimental liquid-cooled engine. Note the annular coolant manifold around the front of the engine that delivered water to the water pumps.

While the R-2060 would be P&W’s first liquid-cooled engine, the company had experimented with liquid-cooled cylinders as early as 1928. In addition, many of P&W’s engineers had experience with liquid-cooled engines while working for other organizations—in particular, those workers who had helped develop liquid-cooled engines at Wright Aeronautical.

The R-2060 had a one-piece, cast aluminum, barrel-type crankcase. Attached radially around the crankcase at 72-degree intervals were five cylinder banks. The lowest (No. 3) cylinder bank was inverted and hung straight down from the crankcase. Each cylinder bank consisted of four individual cylinders arranged in a line. This configuration created a 20-cylinder inline-radial engine. Attached to the front of the crankcase was a propeller gear housing that contained a planetary bevel reduction gear. Mounted to the rear of the crankcase was the supercharger and accessory section.

The crankshaft had four throws and was supported by five main bearings. Mounted to each crankpin was a master connecting rod with four articulated connecting rods—a typical arrangement found in radial engines. Each individual cylinder was surrounded by a steel water jacket. Mounted atop each bank of cylinders was a housing that concealed a single overhead camshaft. The camshaft actuated the one intake valve and one exhaust valve in each cylinder. Each camshaft was driven from the front of the engine by a vertical shaft and bevel gears. Driven from the rear of each camshafts was a magneto that fired the two spark plugs in each cylinder for that cylinder bank. The spark plugs were installed horizontally into the combustion chamber and placed on each exposed side of the cylinder. The camshaft housing on the lower cylinder bank was deeper and served as an oil sump.

Pratt Whitney R-2060 Yellow Jacket right

The 20-cylinder R-2060 was a fairly compact and light engine. Note the camshaft housings atop each cylinder bank and that the housing of the lower bank was deeper to serve as an oil sump. (Tom Fey image via the Aircraft Engine Historical Society)

Air was drawn into the downdraft carburetor mounted at the rear of the engine. Fuel was added, and the mixture then passed into the supercharger, which was primarily used to mix the air and fuel rather than provide boost. The air and fuel flowed from the supercharger through five outlets—one between each cylinder bank. The outlets were cast integral with the crankcase. Attached to each outlet was an intake manifold that branched into two sections, with each section branching further into two additional sections. The four pipes were then connected to the four cylinders of the cylinder bank. The exhaust ports were on the opposite side of the cylinder bank.

Cooling water flowed from the radiator into two inlets on an annular manifold mounted around the rear of the engine. The manifold had five outlets, one for each cylinder bank. Water flowed from the annular manifold into a pipe that ran along each cylinder bank. Branching off from the pipe were connections for each cylinder, with the mounting point near the exhaust port. The water passed by the exhaust port and through the water jacket, exiting near the intake port. The water from each cylinder was collected in another pipe that led to a smaller annular manifold mounted around the front of the engine. Two water pumps driven at the front of the engine took water from the front manifold and returned it to the radiator.

Pratt Whitney R-2060 Yellow Jacket left close

For each cylinder bank, the inlet for the intake manifold was cast into the crankcase. Note the water manifolds attached to the cylinders. The generator can be seen mounted on the left. (Tom Fey image via the Aircraft Engine Historical Society)

The Pratt & Whitney R-2060 Yellow Jacket had a 5.1875 in (132 mm) bore and a 4.875 in (124 mm) stroke. Creating an oversquare (bore larger than the stroke) engine was not typical for P&W and was repeated only with the R-2000, which was derived from the R-1830 with minimal changes. However, the comparatively short stroke helped decrease the engine’s diameter. The R-2060 displaced 2,061 cu in (33.8 L) and was projected to produce 1,500 hp (1,119 kW) at 3,300 rpm. The Yellow Jacket was 68 in (1.73 m) long and 47 in (1.19 m) in diameter. The engine weighed 1,400 lb (635 kg).

Serious design work on the R-2060 was started in March 1931, and single-cylinder testing began in August of the same year. The engine was first run in July 1932, and issues were soon encountered with oil circulation and coolant leaks. Throughout the rest of 1932, P&W worked to solve the oiling issues, control excessive oil consumption, prevent hot spots in various cylinder banks, and eliminate cracks in the cylinder water jackets. On one of its last tests, the R-2060 achieved 1,116 hp (820 kW) at 2,500 rpm, but reaching 1,500 hp (1,119 kW) at 3,300 rpm was beyond what the engine could handle. A major redesign of the engine was needed, and the Yellow Jacket project was subsequently cancelled in early 1933 after accumulating just 46 hours of test running. Only one R-2060 engine was built.

Cancellation of the R-2060 allowed P&W to focus on the development of the air-cooled, two-row, 14-cylinder R-1830 Twin Wasp radial engine. The R-1830 became the most produced aircraft engine of all time, with 173,618 examples built. The sole R-2060 Yellow Jacket was preserved and is part of Pratt & Whitney’s Hangar Museum in East Hartford, Connecticut.

Pratt Whitney R-2060 Yellow Jacket rear

Rear view of the R-2060 illustrates the engine’s carburetor and supercharger housing. The annular manifold around the rear of the engine supplied cooling water to the five cylinder banks. (Kimble D. McCutcheon image via the Aircraft Engine Historical Society)

Sources:
– The Liquid-Cooled Engines of Pratt & Whitney by Kimble D. McCutcheon (presentation at the 2006 Aircraft Engine Historical Society Convention)
Development of Aircraft Engines and Fuels by Robert Schlaifer and S. D. Heron (1950)
The Engines of Pratt & Whitney: A Technical History by Jack Connors (2009)

Farman 18T engine

Farman 18T 18-Cylinder Aircraft Engine

By William Pearce

The rules of the Schneider Trophy Contest stated that any country that won the contest three consecutive times would retain permanent possession of the trophy. By 1930, Britain had two consecutive victories and were favored to win the next contest scheduled for September 1931. Frenchman Jacques P. Schneider had started the contest, and France won the first competition held in 1913. The possibility of losing the contest forever spurred France to action, and the STIAé (service technique et industriel de l’aéronautique, or the Technical and Industrial Service of Aeronautics) ordered at least five aircraft types and three different engines for the 1931 contest. One of the engines ordered was the Farman 18T.

Farman 18T engine

The Farman 18T was specifically designed for installation in the Bernard flying boat. The unusual 18-cylinder engine had no other known applications.

Avions Farman (Farman) was founded in 1908 by brothers Richard, Henri, and Maurice. In October 1917, the company moved to produce engines built under license to support the war effort. The first of these engines was built in mid-1918, and production stopped after World War I. In 1922, Farman started to design their own line of engines under the direction of Charles-Raymond Waseige.

The Farman 18T was designed by Waseige and had an unusual layout. The water-cooled engine had three cylinder banks, each with six cylinders. The left and right cylinder banks were horizontally opposed, with a 180-degree flat angle across the engine’s top side. The lower cylinder extended below the crankcase and was perpendicular to the other cylinder banks. This configuration gave the 18-cylinder engine a T shape.

The engine used a two-piece cast aluminum crankcase that was split vertically. Steel cylinder liners were installed in the cast aluminum, monobloc cylinder banks that were bolted to the crankcase. The four valves of each cylinder were actuated via pairs of rockers by a single overhead camshaft. Each camshaft was driven by a vertical shaft at the rear of the engine.

The 18T used aluminum pistons and had a compression ratio of 6.0 to 1, although some sources say 8.5 to 1. The connecting rods consisted of a master rod for the lower cylinder bank and two articulated rods for the left and right cylinder banks. Each cylinder had two spark plugs, one installed in each side of the cylinder bank. The spark plugs were fired by magnetos driven from the rear of the engine. A nose case at the front of the engine contained the Farman-style bevel propeller reduction gear that turned the propeller at .384 crankshaft speed.

Farman 18T Paris Air Show 1932

The 18T (lower left) was proudly displayed as part of the Farman exhibit at the Salon de l’Aéronautique in November 1932. The other Farman engines are a 350 hp (261 kW) 12G (middle) and a 420 hp (313 kW) 12B (right).

For induction, air passed through carburetors at the rear of the engine and into a centrifugal supercharger that provided approximately 4.4 lb (.3 bar) of boost. The air/fuel mixture flowed from the supercharger into an intake manifold for each cylinder bank. The intake manifolds ran along the bottom of the cylinder bank for the left and right banks and along the right side (when viewed from the non-propeller end) of the lower cylinder bank. The exhaust ports were on the opposite side of the cylinder head from the intake.

The 18T had a 4.72 in (120 mm) bore and stroke. The engine displaced 1,491 cu in (24.4 L) and produced a maximum of 1,480 hp (1,104 kW) at 3,700 rpm. The 18T was rated at 1,200 hp (895 kW) at 3,400 rpm for continuous output. The engine was 65.98 in (1.68 m) long, 44.65 in (1.13 m) wide, 32.56 (.83 m) tall, and weighed 1,069 lb (485 kg).

Two Farman 18T engines were ordered under Contract (Marché) 289/0 (some sources state Marché 269/0) issued in 1930 and valued at 3,583,000 Ғ. The two engines were to power a flying boat built by the Société des avions Bernard (Bernard Aircraft Company). An official designation for the flying boat has not been found, and it was not among the known aircraft ordered for the 1931 Schneider Contest. There is some speculation that a lack of funds prevented the aircraft from being ordered for the 1931 race, but it would be ordered in time for the 1933 race.

Farman 18T Paris Air Show 1932 display

The display at the air show in Paris announced the 18T’s 1,200 hp (895 kW) continuous rating. Note that the supercharger housing extended above the crankcase, which was otherwise the engine’s highest point.

The design of the Bernard flying boat was led by Roger Robert and developed in coordination with the 18T engine. The all-metal aircraft had a low, two-step hull with sponsons protruding from the sides, just behind the cockpit. A long pylon above the cockpit extended along the aircraft’s spine, and the pylon supported the engine nacelle and wings. The engines were installed back-to-back in the middle of the nacelle. The engines’ lower cylinder banks extended into the pylon, and the left and right cylinder banks extended into the cantilever wings, which were mounted to the sides of the nacelle. Surface radiators for engine cooling covered the sides of the pylon, and extension shafts connected the propellers to the engines. The aircraft had a 36 ft 1 in (11.0 m) wingspan and was 35 ft 5 in (10.8 m) long. The engine nacelle was 17 ft 1 in (5.21 m) long. A 12.5 to 1 scale model of the flying boat was tested at the Laboratoire Aérodynamique Eiffel (Eiffel Aerodynamics Laboratory) in Auteuil (near Paris), France.

The 18T engines were bench tested in 1931, but the most power achieved was only 1,350 hp (1,007 kW). While further development was possible, at the time, the chance of France fielding a contestant in the 1931 Schneider Contest was virtually non-existent. The chances of the Bernard flying-boat being built were even worse. Although the aircraft had an estimated top speed of over 435 mph (700 km/h), and a detailed study was submitted to the Service Technique (Technical Service), the flying boat was seen as too radical and was never ordered. The limited funds were needed for the more conventional racers.

The Supermarine S.6B went on to win the 1931 Schneider Contest, giving the British permanent possession of the trophy. The 18T was marketed in 1932 and displayed at the Paris Salon de l’Aéronautique (Air Show) in November. However, there was little commercial interest in the 18T, and the project was brought to a close without the engine ever being flown; most likely, full testing was never completed.

Bernard - Farman 18T Schneider 3-view

Powered by two 18T engines, the Bernard flying boat racer had an estimated top speed of over 435 mph (700 km/h). This speed was substantially faster than the Supermarine S.6B that won the 1931 Schneider race at 340.08 mph (547.31 km/h) and went on to set an absolute speed record at 407.5 mph (655.8 km/h). However, the estimated specifications of unconventional aircraft often fall short of what is actually achieved.

Sources:
Aerosphere 1939 by Glenn D. Angle (1940)
Les Moteurs a Pistons Aeronautiques Francais Tome 1 by Alfred Bodemer and Robert Laugier (1987)
Schneider Trophy Seaplanes and Flying Boats by Ralph Pegram (2012)
Les Avions Bernard by Jean Liron (1990)
Les Avions Farman by Jean Liron (1984)